您好,登錄后才能下訂單哦!
這篇文章將為大家詳細講解有關Java內存溢出怎么辦,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。
一、常見的Java內存溢出有以下三種
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出
JVM在啟動的時候會自動設置JVM Heap的值,其初始空間(即-Xms)是物理內存的1/64,最大空間(-Xmx)不可超過物理內存。
可以利用JVM提供的-Xmn -Xms -Xmx等選項可進行設置。Heap的大小是Young Generation和Tenured Generaion之和。
在JVM中如果98%的時間是用于GC,且可用的Heap size不足2%的時候將拋出此異常信息。
解決方法:手動設置JVM Heap(堆)的大小。
2. java.lang.OutOfMemoryError: PermGen space ---- PermGen space溢出。
PermGen space的全稱是Permanent Generation space,是指內存的永久保存區域。
為什么會內存溢出,這是由于這塊內存主要是被JVM存放Class和Meta信息的,Class在被Load的時候被放入PermGen space區域,它和存放Instance的Heap區域不同,sun的 GC不會在主程序運行期對PermGen space進行清理,所以如果你的APP會載入很多CLASS的話,就很可能出現PermGen space溢出。
解決方法: 手動設置MaxPermSize大小
3. java.lang.StackOverflowError ---- 棧溢出
棧溢出了,JVM依然是采用棧式的虛擬機,這個和C和Pascal都是一樣的。函數的調用過程都體現在堆棧和退棧上了。
調用構造函數的 “層”太多了,以致于把棧區溢出了。
通常來講,一般棧區遠遠小于堆區的,因為函數調用過程往往不會多于上千層,而即便每個函數調用需要 1K的空間(這個大約相當于在一個C函數內聲明了256個int類型的變量),那么棧區也不過是需要1MB的空間。通常棧的大小是1-2MB的。
通常遞歸也不要遞歸的層次過多,很容易溢出。
解決方法:修改程序。
二、解決方法
在生產環境中tomcat內存設置不好很容易出現jvm內存溢出。
1、 linux下的tomcat:
修改TOMCAT_HOME/bin/catalina.sh
位置cygwin=false前。
JAVA_OPTS="-server -Xms256m -Xmx512m -XX:PermSize=64M -XX:MaxPermSize=128m"
2、 如果tomcat 5 注冊成了windows服務,以services方式啟動的,則需要修改注冊表中的相應鍵值。
修改注冊表HKEY_LOCAL_MACHINE\SOFTWARE\Apache Software Foundation\Tomcat Service Manager\Tomcat5\Parameters\Java,右側的Options
原值為
-Dcatalina.home="C:\ApacheGroup\Tomcat 5.0"
-Djava.endorsed.dirs="C:\ApacheGroup\Tomcat 5.0\common\endorsed"
-Xrs
加入 -Xms256m -Xmx512m,重起tomcat服務,設置生效。
3、如果tomcat 6 注冊成了windows服務,或者windows2003下用tomcat的安裝版,在/bin/tomcat6w.exe里修改就可以了 。
4、 如果要在myeclipse中啟動tomcat,上述的修改就不起作用了,可如下設置:
Myeclipse->preferences->myeclipse->servers->tomcat->tomcat×.×->JDK面板中的Optional Java VM arguments中添加:-Xms256m -Xmx512m -XX:PermSize=64M -XX:MaxPermSize=128m
三、JVM各個參數含義
-server:一定要作為第一個參數,在多個CPU時性能佳堆大小設置
JVM 中最大堆大小有三方面限制:相關操作系統的數據模型(32-bt還是64-bit)限制;系統的可用虛擬內存限制;系統的可用物理內存限制。32位系統下,一般限制在1.5G~2G;64為操作系統對內存無限制。我在Windows Server 2003 系統,3.5G物理內存,JDK5.0下測試,最大可設置為1478m。
典型設置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k
-Xmx3550m:設置JVM最大可用內存為3550M。
-Xms3550m:設置JVM促使內存為3550m。此值可以設置與-Xmx相同,以避免每次垃圾回收完成后JVM重新分配內存。
-Xmn2g:設置年輕代大小為2G。整個堆大小=年輕代大小 + 年老代大小 + 持久代大小。持久代一般固定大小為64m,所以增大年輕代后,將會減小年老代大小。此值對系統性能影響較大,Sun官方推薦配置為整個堆的3/8。
-Xss128k:設置每個線程的堆棧大小。JDK5.0以后每個線程堆棧大小為1M,以前每個線程堆棧大小為256K。更具應用的線程所需內存大小進行調整。在相同物理內存下,減小這個值能生成更多的線程。但是操作系統對一個進程內的線程數還是有限制的,不能無限生成,經驗值在3000~5000左右。
java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0
-XX:NewRatio=4:設置年輕代(包括Eden和兩個Survivor區)與年老代的比值(除去持久代)。設置為4,則年輕代與年老代所占比值為1:4,年輕代占整個堆棧的1/5
-XX:SurvivorRatio=4:設置年輕代中Eden區與Survivor區的大小比值。設置為4,則兩個Survivor區與一個Eden區的比值為2:4,一個Survivor區占整個年輕代的1/6
-XX:MaxPermSize=16m:設置持久代大小為16m。
-XX:MaxTenuringThreshold=0:設置垃圾最大年齡。如果設置為0的話,則年輕代對象不經過Survivor區,直接進入年老代。對于年老代比較多的應用,可以提高效率。如果將此值設置為一個較大值,則年輕代對象會在Survivor區進行多次復制,這樣可以增加對象再年輕代的存活時間,增加在年輕代即被回收的概論。
回收器選擇
JVM給了三種選擇:串行收集器、并行收集器、并發收集器,但是串行收集器只適用于小數據量的情況,所以這里的選擇主要針對并行收集器和并發收集器。默認情況下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在啟動時加入相應參數。JDK5.0以后,JVM會根據當前系統配置進行判斷。
吞吐量優先的并行收集器
如上文所述,并行收集器主要以到達一定的吞吐量為目標,適用于科學技術和后臺處理等。
典型配置:
java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20
-XX:+UseParallelGC:選擇垃圾收集器為并行收集器。此配置僅對年輕代有效。即上述配置下,年輕代使用并發收集,而年老代仍舊使用串行收集。
-XX:ParallelGCThreads=20:配置并行收集器的線程數,即:同時多少個線程一起進行垃圾回收。此值最好配置與處理器數目相等。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC
-XX:+UseParallelOldGC:配置年老代垃圾收集方式為并行收集。JDK6.0支持對年老代并行收集。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100
-XX:MaxGCPauseMillis=100:設置每次年輕代垃圾回收的最長時間,如果無法滿足此時間,JVM會自動調整年輕代大小,以滿足此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:MaxGCPauseMillis=100-XX:+UseAdaptiveSizePolicy
-XX:+UseAdaptiveSizePolicy:設置此選項后,并行收集器會自動選擇年輕代區大小和相應的Survivor區比例,以達到目標系統規定的最低相應時間或者收集頻率等,此值建議使用并行收集器時,一直打開。
響應時間優先的并發收集器
如上文所述,并發收集器主要是保證系統的響應時間,減少垃圾收集時的停頓時間。適用于應用服務器、電信領域等。
典型配置:
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC
-XX:+UseConcMarkSweepGC:設置年老代為并發收集。測試中配置這個以后,-XX:NewRatio=4的配置失效了,原因不明。所以,此時年輕代大小最好用-Xmn設置。
-XX:+UseParNewGC:設置年輕代為并行收集。可與CMS收集同時使用。
JDK5.0以上,JVM會根據系統配置自行設置,所以無需再設置此值。
java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection
-XX:CMSFullGCsBeforeCompaction:由于并發收集器不對內存空間進行壓縮、整理,所以運行一段時間以后會產生“碎片”,使得運行效率降低。此值設置運行多少次GC以后對內存空間進行壓縮、整理。
-XX:+UseCMSCompactAtFullCollection:打開對年老代的壓縮。可能會影響性能,但是可以消除碎片
輔助信息
JVM提供了大量命令行參數,打印信息,供調試使用。主要有以下一些:
-XX:+PrintGC
輸出形式:[GC 118250K->113543K(130112K), 0.0094143 secs]
[Full GC 121376K->10414K(130112K), 0.0650971 secs]
-XX:+PrintGCDetails
輸出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs]
[GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
-XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可與上面兩個
混合使用
輸出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]
-XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中斷的執行時間。可與上面混合使用
輸出形式:Application time: 0.5291524 seconds
-XX:+PrintGCApplicationStoppedTime:打印垃圾回收期間程序暫停的時間。可與上面混合使用
輸出形式:Total time for which application threads were stopped: 0.0468229 seconds
-XX:PrintHeapAtGC:打印GC前后的詳細堆棧信息
-Xloggc:filename:與上面幾個配合使用,把相關日志信息記錄到文件以便分析。
常見配置匯總
堆設置
-Xms:初始堆大小
-Xmx:最大堆大小
-XX:NewSize=n:設置年輕代大小
-XX:NewRatio=n:設置年輕代和年老代的比值。如:為3,表示年輕代與年老代比值為1:3,年輕代占整個年輕代年老代和的1/4
-XX:SurvivorRatio=n:年輕代中Eden區與兩個Survivor區的比值。注意Survivor區有兩個。如:3,表示Eden:Survivor=3:2,一個Survivor區占整個年輕代的1/5
-XX:MaxPermSize=n:設置持久代大小
收集器設置
-XX:+UseSerialGC:設置串行收集器
-XX:+UseParallelGC:設置并行收集器
-XX:+UseParalledlOldGC:設置并行年老代收集器
-XX:+UseConcMarkSweepGC:設置并發收集器
垃圾回收統計信息
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-Xloggc:filename
并行收集器設置
-XX:ParallelGCThreads=n:設置并行收集器收集時使用的CPU數。并行收集線程數。
-XX:MaxGCPauseMillis=n:設置并行收集最大暫停時間
-XX:GCTimeRatio=n:設置垃圾回收時間占程序運行時間的百分比。公式為1/(1+n)
并發收集器設置
-XX:+CMSIncrementalMode:設置為增量模式。適用于單CPU情況。
-XX:ParallelGCThreads=n:設置并發收集器年輕代收集方式為并行收集時,使用的CPU數。并行收集線程數。
四、調優總結
年輕代大小選擇
響應時間優先的應用:盡可能設大,直到接近系統的最低響應時間限制(根據實際情況選擇)。在此種情況下,年輕代收集發生的頻率也是最小的。同時,減少到達年老代的對象。
吞吐量優先的應用:盡可能的設置大,可能到達Gbit的程度。因為對響應時間沒有要求,垃圾收集可以并行進行,一般適合8CPU以上的應用。
年老代大小選擇
響應時間優先的應用:年老代使用并發收集器,所以其大小需要小心設置,一般要考慮并發會話率和會話持續時間等一些參數。如果堆設置小了,可以會造成內存碎片、高回收頻率以及應用暫停而使用傳統的標記清除方式;如果堆大了,則需要較長的收集時間。最優化的方案,一般需要參考以下數據獲得:
并發垃圾收集信息
持久代并發收集次數
傳統GC信息
花在年輕代和年老代回收上的時間比例
減少年輕代和年老代花費的時間,一般會提高應用的效率
吞吐量優先的應用:一般吞吐量優先的應用都有一個很大的年輕代和一個較小的年老代。原因是,這樣可以盡可能回收掉大部分短期對象,減少中期的對象,而年老代盡存放長期存活對象。
較小堆引起的碎片問題
因為年老代的并發收集器使用標記、清除算法,所以不會對堆進行壓縮。當收集器回收時,他會把相鄰的空間進行合并,這樣可以分配給較大的對象。但是,當堆空間較小時,運行一段時間以后,就會出現“碎片”,如果并發收集器找不到足夠的空間,那么并發收集器將會停止,然后使用傳統的標記、清除方式進行回收。如果出現“碎片”,可能需要進行如下配置:
-XX:+UseCMSCompactAtFullCollection:使用并發收集器時,開啟對年老代的壓縮。
-XX:CMSFullGCsBeforeCompaction=0:上面配置開啟的情況下,這里設置多少次Full GC后,對年老代進行壓縮。
關于“Java內存溢出怎么辦”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,使各位可以學到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。