91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Sqoop1.x的安裝配置方法

發布時間:2021-08-05 22:21:37 來源:億速云 閱讀:97 作者:chen 欄目:云計算

這篇文章主要介紹“Sqoop1.x的安裝配置方法”,在日常操作中,相信很多人在Sqoop1.x的安裝配置方法問題上存在疑惑,小編查閱了各式資料,整理出簡單好用的操作方法,希望對大家解答”Sqoop1.x的安裝配置方法”的疑惑有所幫助!接下來,請跟著小編一起來學習吧!

一、安裝hadoop

hadoop:

sqoop2.x:

http://my.oschina.net/u/204498/blog/518941

二、安裝sqoop1.x

1.選擇對應的版本

[hadoop@hftclclw0001 ~]$ pwd
/home/hadoop

[hadoop@hftclclw0001 ~]$ wget 
 
[hadoop@hftclclw0001 ~]$ tar -zxvf sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz

[hadoop@hftclclw0001 ~]$ cd sqoop-1.4.6.bin__hadoop-2.0.4-alpha/conf

[hadoop@hftclclw0001 conf]$ ls -al
total 44
drwx------ 2 hadoop root 4096 Nov 25 04:32 .
drwx------ 9 hadoop root 4096 Nov 25 04:20 ..
-rw------- 1 hadoop root  818 Apr 27  2015 .gitignore
-rw------- 1 hadoop root 3895 Apr 27  2015 oraoop-site-template.xml
-rw------- 1 hadoop root 1404 Apr 27  2015 sqoop-env-template.cmd
-rwx------ 1 hadoop root 1345 Apr 27  2015 sqoop-env-template.sh
-rw------- 1 hadoop root 5531 Apr 27  2015 sqoop-site-template.xml
-rw------- 1 hadoop root 5531 Apr 27  2015 sqoop-site.xml

[hadoop@hftclclw0001 conf]$ cp  sqoop-env-template.sh  sqoop-env.sh

[hadoop@hftclclw0001 conf]$ vim sqoop-env.sh
export HADOOP_COMMON_HOME=/home/hadoop/hadoop-2.7.1

#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/home/hadoop/hadoop-2.7.1/share/hadoop/mapreduce

#set the path to where bin/hbase is available           => 可以不用,當使用到HBASE時再配置
#export HBASE_HOME=/home/hadoop/hbase-1.0.1.1

#Set the path to where bin/hive is available            => 可以不使用,當使用的HIVE時再配置
#export HIVE_HOME=/home/hadoop/apache-hive-1.2.1-bin
#Set the path for where zookeper config dir is
#export ZOOCFGDIR=

export JAVA_HOME=/usr/java/latest                       => 要安裝JDK,之前安裝的JRE,使用時會有問題

2.添加對應的jdbc 驅動,我使用的是mysql

[hadoop@hftclclw0001 lib]$ pwd
/home/hadoop/sqoop-1.4.6.bin__hadoop-2.0.4-alpha/lib

[hadoop@hftclclw0001 lib]$ ls -al | grep mysql
-rw------- 1 hadoop root  848401 Nov  3 06:41 mysql-connector-java-5.1.25-bin.jar

三、Sqoop 1.x 語法

1.安裝mysql(配置相應的repo)

[root@hftclclw0001 opt] yum install mysql-server mysql mysql-client

2.啟動并測試,并給root用戶添加密碼

[root@hftclclw0001 opt] service mysqld start

[root@hftclclw0001 opt]# netstat -apn|grep 3306
tcp        0      0 0.0.0.0:3306                0.0.0.0:*                   LISTEN      24540/mysqld 

[root@hftclclw0001 opt]# mysql -u root -p
Enter password: 

mysql>

3.準備測試數據

我參考的是Apache Sqoop Cookbook 使用的mysql的

https://github.com/jarcec/Apache-Sqoop-Cookbook

使用github上面的mysql文件,創建sqoop用戶,創建sqoop數據庫,并新增對應的tables。并給sqoop用戶賦予相應的權限

mysql> show databases;
+--------------------+
| Database           |
+--------------------+
| information_schema |
| mysql              |
| performance_schema |
| sqoop              |
+--------------------+
4 rows in set (0.00 sec)

mysql> use sqoop

mysql> show tables;
+-----------------+
| Tables_in_sqoop |
+-----------------+
| cities          |
| countries       |
| normcities      |
| staging_cities  |
| visits          |
+-----------------+
5 rows in set (0.00 sec)

chapter2 importing data

sqoop list:

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop-list-tables --connect jdbc:mysql://{ip}:{por}/sqoop \
> --username sqoop \
> --password sqoop
...
...
cities
countries
normcities
staging_cities
visits                        => 這些tables就是之前mysql中的新建的
sqoop import:全表導入(transferring an entire table)

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop import \
> --connect jdbc:mysql://{ip}:{port}/sqoop \
> --username sqoop \
> --password sqoop \
> --table cities
...                            => 會調用MR,讀取mysql,并寫入文件中(默認理解是當前用戶下,table名稱對應的木)

總共三條記錄,生成了三個文件
[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ hadoop dfs -ls /user/hadoop/cities
-rw-r--r--   3 hadoop supergroup          0 2015-11-25 05:29 /user/hadoop/cities/_SUCCESS
-rw-r--r--   3 hadoop supergroup         16 2015-11-25 05:29 /user/hadoop/cities/part-m-00000
-rw-r--r--   3 hadoop supergroup         22 2015-11-25 05:29 /user/hadoop/cities/part-m-00001
-rw-r--r--   3 hadoop supergroup         16 2015-11-25 05:29 /user/hadoop/cities/part-m-00002

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ hadoop dfs -cat cities/part-m-00000
1,USA,Palo Alto
sqoop import:指定路徑(specifying a target directory)
--target-dir   指定路徑不能存在(針對單表使用的)

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop import \
> --connect jdbc:mysql://{ip}:{port}/sqoop \
> --username sqoop \
> --password sqoop \
> --table cities \
> --target-dir /tmp/cities

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ hadoop dfs -ls /tmp/cities
-rw-r--r--   3 hadoop supergroup          0 2015-11-25 05:29 /user/hadoop/cities/_SUCCESS
-rw-r--r--   3 hadoop supergroup         16 2015-11-25 05:29 /user/hadoop/cities/part-m-00000
-rw-r--r--   3 hadoop supergroup         22 2015-11-25 05:29 /user/hadoop/cities/part-m-00001
-rw-r--r--   3 hadoop supergroup         16 2015-11-25 05:29 /user/hadoop/cities/part-m-00002

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ hadoop dfs -cat cities/part-m-00000
1,USA,Palo Alto

當多表導入是,可以使用--warehouse-dir   會再指定目錄下,再生成以table表名稱的目錄
sqoop import:帶where條件的sql,即子集 (importing only a subset of data)

mysql> select * from sqoop.cities;
+----+----------------+-----------+
| id | country        | city      |
+----+----------------+-----------+
|  1 | USA            | Palo Alto |
|  2 | Czech Republic | Brno      |
|  3 | USA            | Sunnyvale |
+----+----------------+-----------+
3 rows in set (0.00 sec)

mysql> select * from sqoop.cities where country = 'USA';
+----+---------+-----------+
| id | country | city      |
+----+---------+-----------+
|  1 | USA     | Palo Alto |
|  3 | USA     | Sunnyvale |
+----+---------+-----------+
2 rows in set (0.00 sec)

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ hadoop dfs -rmr /tmp/cities
[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop import \
> --connect jdbc:mysql://{ip}:{port}/sqoop \
> --username sqoop \
> --password sqoop \
> --table cities \
> --where "country = 'USA'" \
> --target-dir /tmp/cities
sqoop import:(protecting your password)
[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop import \
> --connect jdbc:mysql://{ip}:{port}/sqoop \
> --username sqoop \
> --table cities \
> --where "country = 'USA'" \
> --target-dir /tmp/cities \
> -P                                => 命令行輸入

>--password-file my-sqoop-password  => 指定密碼文件


sqoop import:(Using a File Format Other Than CSV)
默認生成的是CSV文件,字段間使用tab間隔

--as-sequencefile
--as-avrodatafile        

sqoop import:(Compressing imported data)
--compress
--compression-codec org.apache.hadoop.io.compress.BZip2Codec            =>指定壓縮算法
sqoop import:(speeding up transfers)
默認mr的inputformat是通過jdbc的形式讀取數據,效率低,可以使用數據庫提供的一些工具,如mysql的 mysqldump等

--direct

chapter3 Incremental Import

mysql> select * from sqoop.visits;
+----+----------+---------------------+
| id | city     | last_update_date    |
+----+----------+---------------------+
|  1 | Freemont | 1983-05-22 01:01:01 |
|  2 | Jicin    | 1987-02-02 02:02:02 |
+----+----------+---------------------+
2 rows in set (0.00 sec)

importing only new data
表中有個id的主鍵(int類型的) 我們導入>1的數據
--check-column   => 檢查那個字段
--last-value     => 檢查的字段,上次的值是多少,這次會 +1 開始導入

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop import \
>--connect jdbc:mysql://{ip}:{port}/sqoop \
>--username sqoop \
>--password sqoop \
>--table visits \
>--target-dir /tmp/visits \
>--incremental append \        => incremental 模式是append 即追加
>--check-column id \           => append模式下, 需要一個遞增的主鍵
>--last-value 1                => 會從 id>1開始導入

注意這邊在執行的時候是輸出以下日志,提示下次增量import是last-value 2  (即本次導入的最后一條記錄)
并提示你最好使用 sqoop job --create 來處理類似的定時增量導入

15/11/25 06:05:28 INFO tool.ImportTool: Incremental import complete! To run another incremental import of all data following this import, supply the following arguments:
15/11/25 06:05:28 INFO tool.ImportTool:  --incremental append
15/11/25 06:05:28 INFO tool.ImportTool:   --check-column id
15/11/25 06:05:28 INFO tool.ImportTool:   --last-value 2
15/11/25 06:05:28 INFO tool.ImportTool: (Consider saving this with 'sqoop job --create')

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ hadoop dfs -ls /tmp/visits
-rw-r--r--   3 hadoop supergroup         30 2015-11-25 06:05 /tmp/visits/part-m-00000

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ hadoop dfs -cat /tmp/visits/part-m-00000
2,Jicin,1987-02-02 02:02:02.0


incrementally importing mutable data

Sqoop Job:

http://shiyanjun.cn/archives/621.html

我們使用Sqoop1.x是,在rdbms和hadoop/hive進行數據同步時,如果是用了--incremental append模式,我們要記錄--last-value.如果每次執行同步腳步時候,都需要從日志中解析出一個--last-value的值,然后重新設置腳步的參數,才能正確的保證同步正確。

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop job \
>--create visits-sync-job \                            => 創建job: job-id(visits-sync-job)
>-- \
>import \
>--connect jdbc:mysql://10.224.243.124:3306/sqoop \
>--username sqoop \
>--password sqopp \
>--table visits \
>--incremental append \
>--check-column id \
>--last-value 1

[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop job --list
15/11/25 06:40:00 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Available jobs:
  visits-sync-job
  
[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop job --show visits-sync-job
15/11/25 06:40:10 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Enter password:

Job: visits-sync-job
Tool: import
...
...
incremental.last.value = 1
...


[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop job --exec visits-sync-job
Enter password:


執行job后,我們在show job
[hadoop@hftclclw0001 sqoop-1.4.6.bin__hadoop-2.0.4-alpha]$ ./bin/sqoop job --show visits-sync-job
15/11/25 06:44:52 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
Enter password: 
incremental.last.value = 2            => last_value已經被記錄下,下次再執行的時候就會讀取該值,再執行

chapter 4 Free-Form Query Import

sqoop import:(importing data from two tables)

mysql> select * from sqoop.cities;
+----+----------------+-----------+
| id | country        | city      |
+----+----------------+-----------+
|  1 | USA            | Palo Alto |
|  2 | Czech Republic | Brno      |
|  3 | USA            | Sunnyvale |
+----+----------------+-----------+
3 rows in set (0.00 sec)

mysql> select * from sqoop.countries;
+------------+----------------+
| country_id | country        |
+------------+----------------+
|          1 | USA            |
|          2 | Czech Republic |
+------------+----------------+
2 rows in set (0.00 sec)

到此,關于“Sqoop1.x的安裝配置方法”的學習就結束了,希望能夠解決大家的疑惑。理論與實踐的搭配能更好的幫助大家學習,快去試試吧!若想繼續學習更多相關知識,請繼續關注億速云網站,小編會繼續努力為大家帶來更多實用的文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

喀喇沁旗| 贵港市| 宜春市| 潜江市| 延川县| 厦门市| 射洪县| 阜城县| 武宁县| 旌德县| 金乡县| 廊坊市| 伊春市| 阜城县| 湟源县| 隆尧县| 柏乡县| 丽江市| 青铜峡市| 浦东新区| 安泽县| 黎平县| 句容市| 沁源县| 岳普湖县| 和龙市| 灯塔市| 双辽市| 兰考县| 年辖:市辖区| 邳州市| 托克托县| 盐山县| 靖安县| 黑山县| 太保市| 德保县| 新田县| 清水河县| 安顺市| 虞城县|