91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Hive中的復合數據結構以及函數的用法說明是什么

發布時間:2021-11-22 18:13:42 來源:億速云 閱讀:162 作者:柒染 欄目:云計算

本篇文章為大家展示了Hive中的復合數據結構以及函數的用法說明是什么,內容簡明扼要并且容易理解,絕對能使你眼前一亮,通過這篇文章的詳細介紹希望你能有所收獲。

目前 hive 支持的復合數據類型有以下幾種:

map
(key1, value1, key2, value2, ...) Creates a map with the given key/value pairs
struct  
(val1, val2, val3, ...) Creates a struct with the given field values. Struct field names will be col1, col2, ...
named_struct  
(name1, val1, name2, val2, ...) Creates a struct with the given field names and values. (as of Hive 0.8.0)
array  
(val1, val2, ...) Creates an array with the given elements
create_union  
(tag, val1, val2, ...) Creates a union type with the value that is being pointed to by the tag parameter

一、map、struct、array 這3種的用法:

1、Array的使用

創建數據庫表,以array作為數據類型
create table  person(name string,work_locations array<string>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';
數據
biansutao beijing,shanghai,tianjin,hangzhou
linan changchu,chengdu,wuhan
入庫數據
LOAD DATA LOCAL INPATH '/home/hadoop/person.txt' OVERWRITE INTO TABLE person;
查詢
hive> select * from person;
biansutao       ["beijing","shanghai","tianjin","hangzhou"]
linan   ["changchu","chengdu","wuhan"]
Time taken: 0.355 seconds
hive> select name from person;
linan
biansutao
Time taken: 12.397 seconds
hive> select work_locations[0] from person;
changchu
beijing
Time taken: 13.214 seconds
hive> select work_locations from person;   
["changchu","chengdu","wuhan"]
["beijing","shanghai","tianjin","hangzhou"]
Time taken: 13.755 seconds
hive> select work_locations[3] from person;
NULL
hangzhou
Time taken: 12.722 seconds
hive> select work_locations[4] from person;
NULL
NULL
Time taken: 15.958 seconds

2、Map 的使用

創建數據庫表
create table score(name string, score map<string,int>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ','
MAP KEYS TERMINATED BY ':';
要入庫的數據
biansutao '數學':80,'語文':89,'英語':95
jobs '語文':60,'數學':80,'英語':99
入庫數據
LOAD DATA LOCAL INPATH '/home/hadoop/score.txt' OVERWRITE INTO TABLE score;
查詢
hive> select * from score;
biansutao       {"數學":80,"語文":89,"英語":95}
jobs    {"語文":60,"數學":80,"英語":99}
Time taken: 0.665 seconds
hive> select name from score;
jobs
biansutao
Time taken: 19.778 seconds
hive> select t.score from score t;
{"語文":60,"數學":80,"英語":99}
{"數學":80,"語文":89,"英語":95}
Time taken: 19.353 seconds
hive> select t.score['語文'] from score t;
60
89
Time taken: 13.054 seconds
hive> select t.score['英語'] from score t;
99
95
Time taken: 13.769 seconds

3、Struct 的使用

創建數據表
CREATE TABLE test(id int,course struct<course:string,score:int>)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
COLLECTION ITEMS TERMINATED BY ',';
數據
1 english,80
2 math,89
3 chinese,95
入庫
LOAD DATA LOCAL INPATH '/home/hadoop/test.txt' OVERWRITE INTO TABLE test;
查詢
hive> select * from test;
OK
1       {"course":"english","score":80}
2       {"course":"math","score":89}
3       {"course":"chinese","score":95}
Time taken: 0.275 seconds
hive> select course from test;
{"course":"english","score":80}
{"course":"math","score":89}
{"course":"chinese","score":95}
Time taken: 44.968 seconds
select t.course.course from test t; 
english
math
chinese
Time taken: 15.827 seconds
hive> select t.course.score from test t;
80
89
95
Time taken: 13.235 seconds

4、數據組合 (不支持組合的復雜數據類型)

LOAD DATA LOCAL INPATH '/home/hadoop/test.txt' OVERWRITE INTO TABLE test;
create table test1(id int,a MAP<STRING,ARRAY<STRING>>)
row format delimited fields terminated by '\t' 
collection items terminated by ','
MAP KEYS TERMINATED BY ':';
1 english:80,90,70
2 math:89,78,86
3 chinese:99,100,82
LOAD DATA LOCAL INPATH '/home/hadoop/test1.txt' OVERWRITE INTO TABLE test1;

二、hive中的一些不常見函數的用法:

常見的函數就不廢話了,和標準sql類似,下面我們要聊到的基本是HQL里面專有的函數,

hive里面的函數大致分為如下幾種:Built-in、Misc.、UDF、UDTF、UDAF

我們就挑幾個標準SQL里沒有,但是在HIVE SQL在做統計分析常用到的來說吧。

1、array_contains (Collection Functions)

這是內置的對集合進行操作的函數,用法舉例:

create EXTERNAL table IF NOT EXISTS userInfo (id int,sex string, age int, name string, email string,sd string, ed string)  ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' location '/hive/dw';

select * from userinfo where sex='male' and (id!=1 and id !=2 and id!=3 and id!=4 and id!=5) and age < 30;
select * from (select * from userinfo where sex='male' and !array_contains(split('1,2,3,4,5',','),cast(id as string))) tb1 where tb1.age < 30;

其中建表所用的測試數據你可以用如下鏈接的腳本自動生成:

http://my.oschina.net/leejun2005/blog/76631

2、get_json_object (Misc. Functions)

測試數據:

first {"store":{"fruit":[{"weight":8,"type":"apple"},{"weight":9,"type":"pear"}],"bicycle":{"price":19.951,"color":"red1"}},"email":"amy@only_for_json_udf_test.net","owner":"amy1"} third
first {"store":{"fruit":[{"weight":9,"type":"apple"},{"weight":91,"type":"pear"}],"bicycle":{"price":19.952,"color":"red2"}},"email":"amy@only_for_json_udf_test.net","owner":"amy2"} third
first {"store":{"fruit":[{"weight":10,"type":"apple"},{"weight":911,"type":"pear"}],"bicycle":{"price":19.953,"color":"red3"}},"email":"amy@only_for_json_udf_test.net","owner":"amy3"} third

create external table if not exists t_json(f1 string, f2 string, f3 string) row format delimited fields TERMINATED BY ' ' location '/test/json'
select get_json_object(t_json.f2, '$.owner') from t_json;
SELECT * from t_json where get_json_object(t_json.f2, '$.store.fruit[0].weight') = 9;
SELECT get_json_object(t_json.f2, '$.non_exist_key') FROM t_json;

這里尤其要注意UDTF的問題,官方文檔有說明:

json_tuple
A new json_tuple() UDTF is introduced in hive 0.7. It takes a set of names (keys) and a JSON string, and returns a tuple of values using one function. This is much more efficient than calling GET_JSON_OBJECT to retrieve more than one key from a single JSON string. In any case where a single JSON string would be parsed more than once, your query will be more efficient if you parse it once, which is what JSON_TUPLE is for. As JSON_TUPLE is a UDTF, you will need to use the LATERAL VIEW syntax in order to achieve the same goal.

For example,

select a.timestamp, get_json_object(a.appevents, '$.eventid'), get_json_object(a.appenvets, '$.eventname') from log a;

should be changed to

select a.timestamp, b.*
from log a lateral view json_tuple(a.appevent, 'eventid', 'eventname') b as f1, f2;

UDTF(User-Defined Table-Generating Functions)  用來解決 輸入一行輸出多行(On-to-many maping) 的需求。  

通過Lateral view可以方便的將UDTF得到的行轉列的結果集合在一起提供服務,因為直接在SELECT使用UDTF會存在限制,即僅僅能包含單個字段,不光是多個UDTF,僅僅單個UDTF加上其他字段也是不可以,hive提示在UDTF中僅僅能有單一的表達式。如下:
hive> select my_test(“abcef:aa”) as qq,’abcd’ from sunwg01;
FAILED: Error in semantic analysis: Only a single expression in the SELECT clause is supported with UDTF’s

使用Lateral view可以實現上面的需求,Lateral view語法如下:
lateralView: LATERAL VIEW udtf(expression) tableAlias AS columnAlias (‘,’ columnAlias)*
fromClause: FROM baseTable (lateralView)*
hive> create table sunwg ( a array, b array )
> ROW FORMAT DELIMITED
> FIELDS TERMINATED BY ‘\t’
> COLLECTION ITEMS TERMINATED BY ‘,’;
OK
Time taken: 1.145 seconds
hive> load data local inpath ‘/home/hjl/sunwg/sunwg.txt’ overwrite into table sunwg;
Copying data from file:/home/hjl/sunwg/sunwg.txt
Loading data to table sunwg
OK
Time taken: 0.162 seconds
hive> select * from sunwg;
OK
[10,11] ["tom","mary"]
[20,21] ["kate","tim"]
Time taken: 0.069 seconds
hive>
> SELECT a, name
> FROM sunwg LATERAL VIEW explode(b) r1 AS name;
OK
[10,11] tom
[10,11] mary
[20,21] kate
[20,21] tim
Time taken: 8.497 seconds

hive> SELECT id, name
> FROM sunwg LATERAL VIEW explode(a) r1 AS id
> LATERAL VIEW explode(b) r2 AS name;
OK
10 tom
10 mary
11 tom
11 mary
20 kate
20 tim
21 kate
21 tim
Time taken: 9.687 seconds

3、parse_url_tuple

測試數據:

url1 http://facebook.com/path2/p.php?k1=v1&k2=v2#Ref1
url2 https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF#LanguageManualUDF-getjsonobject
url3 https://www.google.com.hk/#hl=zh-CN&newwindow=1&safe=strict&q=hive+translate+example&oq=hive+translate+example&gs_l=serp.3...10174.11861.6.12051.8.8.0.0.0.0.132.883.0j7.7.0...0.0...1c.1j4.8.serp.0B9C1T_n0Hs&bav=on.2,or.&bvm=bv.44770516,d.aGc&fp=e13e41a6b9dab3f6&biw=1241&bih=589

create external table if not exists t_url(f1 string, f2 string) row format delimited fields TERMINATED BY ' ' location '/test/url';
SELECT f1, b.* FROM t_url LATERAL VIEW parse_url_tuple(f2, 'HOST', 'PATH', 'QUERY', 'QUERY:k1') b as host, path, query, query_id;

結果:

url1 facebook.com /path2/p.php k1=v1&k2=v2 v1
url2 cwiki.apache.org /confluence/display/Hive/LanguageManual+UDF NULL NULL
url3 www.google.com.hk / NULL NULL

4、explode

explode 是一個 hive 內置的表生成函數:Built-in Table-Generating Functions (UDTF),主要是解決 1 to N 的問題,即它可以把一行輸入拆成多行,比如一個 array 的每個元素拆成一行,作為一個虛表輸出。它有如下需要注意的地方:

Using the syntax "SELECT udtf(col) AS colAlias..." has a few limitations:
No other expressions are allowed in SELECT
SELECT pageid, explode(adid_list) AS myCol... is not supported
UDTF's can't be nested
SELECT explode(explode(adid_list)) AS myCol... is not supported
GROUP BY / CLUSTER BY / DISTRIBUTE BY / SORT BY is not supported
SELECT explode(adid_list) AS myCol ... GROUP BY myCol is not supported

從上面的原理與語法上可知,

  • select 列中不能 udtf 和其它非 udtf 列混用,

  • udtf 不能嵌套,

  • 不支持 GROUP BY / CLUSTER BY / DISTRIBUTE BY / SORT BY

  • 還有 select 中出現的 udtf 一定需要列別名,否則會報錯:

SELECT explode(myCol) AS myNewCol FROM myTable;
SELECT explode(myMap) AS (myMapKey, myMapValue) FROM myMapTable;
SELECT posexplode(myCol) AS pos, myNewCol FROM myTable;

5、lateral view

lateral view 是Hive中提供給UDTF的conjunction,它可以解決UDTF不能添加額外的select列的問題。當我們想對hive表中某一列進行split之后,想對其轉換成1 to N的模式,即一行轉多列。hive不允許我們在UDTF函數之外,再添加其它select語句。

如下,我們想將登錄某個游戲的用戶id放在一個字段user_ids里,對每一行數據用UDTF后輸出多行。

select game_id, explode(split(user_ids,'\\[\\[\\[')) as user_id   from login_game_log  where dt='2014-05-15' ;
FAILED: Error in semantic analysis: UDTF's are not supported outside the SELECT clause, nor nested in expressions。

提示語法分析錯誤,UDTF不支持函數之外的select 語句,如果我們想支持怎么辦呢?接下來就是Lateral View 登場的時候了。

Lateral view 其實就是用來和像類似explode這種UDTF函數聯用的。lateral view 會將UDTF生成的結果放到一個虛擬表中,然后這個虛擬表(1 to N)會和輸入行即每個game_id進行join 來達到連接UDTF外的select字段的目的(源表和拆分的虛表按行做行內 1 join N 的直接連接),這也是為什么 LATERAL VIEW udtf(expression) 后面需要表別名和列別名的原因。

Lateral View Syntax

lateralView: LATERAL VIEW udtf(expression) tableAlias AS columnAlias (',' columnAlias)*

fromClause: FROM baseTable (lateralView)*

可以看出,可以在2個地方用Lateral view:

  • 在udtf前面用

  • 在from baseTable后面用

例如:

pageid adid_list

front_page   [1, 2, 3]

contact_page [3, 4, 5]

SELECT pageid, adid
FROM pageAds LATERAL VIEW explode(adid_list) adTable AS adid;

pageid               adid

front_page         1

front_page         2

front_page         3

contact_page     3

contact_page     4

contact_page     5

From語句后可以跟多個Lateral View。

A FROM clause can have multiple LATERAL VIEW clauses. Subsequent LATERAL VIEWS can reference columns from any of the tables appearing to the left of the LATERAL VIEW.

給定數據:

Array<int> col1     Array<string> col2

[1, 2]                       [a", "b", "c"]

[3, 4]                       [d", "e", "f"]

轉換目標:

想同時把第一列和第二列拆開,類似做笛卡爾乘積。

Hive中的復合數據結構以及函數的用法說明是什么

我們可以這樣寫:

SELECT myCol1, myCol2 FROM baseTable
LATERAL VIEW explode(col1) myTable1 AS myCol1
LATERAL VIEW explode(col2) myTable2 AS myCol2;

還有一種情況,如果UDTF轉換的Array是空的怎么辦呢?

在Hive0.12里面會支持outer關鍵字,如果UDTF的結果是空,默認會被忽略輸出。

如果加上outer關鍵字,則會像left outer join 一樣,還是會輸出select出的列,而UDTF的輸出結果是NULL。

Lateral View通常和UDTF一起出現,為了解決UDTF不允許在select字段的問題。

Multiple Lateral View可以實現類似笛卡爾乘積。

Outer關鍵字可以把不輸出的UDTF的空結果,輸出成NULL,防止丟失數據。

上述內容就是Hive中的復合數據結構以及函數的用法說明是什么,你們學到知識或技能了嗎?如果還想學到更多技能或者豐富自己的知識儲備,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

宝鸡市| 驻马店市| 共和县| 喀什市| 伊川县| 镇赉县| 浦县| 班玛县| 平果县| 青神县| 右玉县| 常宁市| 汕头市| 连州市| 宜黄县| 兖州市| 西平县| 康保县| 永年县| 于田县| 利川市| 博客| 大英县| 利辛县| 江孜县| 大安市| 富锦市| 普格县| 台安县| 渑池县| 临夏县| 博野县| 尤溪县| 崇左市| 龙门县| 康定县| 石嘴山市| 星座| 湘潭县| 海阳市| 鄂伦春自治旗|