您好,登錄后才能下訂單哦!
Delta Lake如何實現CDC實時入湖,相信很多沒有經驗的人對此束手無策,為此本文總結了問題出現的原因和解決方法,通過這篇文章希望你能解決這個問題。
Change Data Capture(CDC)用來跟蹤捕獲數據源的數據變化,并將這些變化同步到目標存儲(如數據湖或數據倉庫),用于數據備份或后續分析,同步過程可以是分鐘/小時/天等粒度,也可以是實時同步。CDC方案分為侵入式(intrusive manner)和非傾入性(non-intrusive manner)兩種。
侵入式方案直接請求數據源系統(如通過JDBC讀取數據),會給數據源系統帶來性能壓力。常見的方案如下:
最后更新時間(Last Modified)
源表需要有修改時間列,同步作業需要指定最后修改時間參數,表明同步某個時間點之后變更的數據。該方法不能同步刪除記錄的變更,同一條記錄多次變更只能記錄最后一次。
自增id列
源表需要有一個自增id列,同步作業需要指定上次同步的最大id值,同步上次之后新增的記錄行。該方法也不能同步刪除記錄的變更,而且老記錄的變更也無法感知。
非侵入性一般通過日志的方式記錄數據源的數據變化(如數據庫的binlog),源庫需要開啟binlog的功能。數據源的每次操作都會被記錄到binlog中(如insert/update/delete等),能夠實時跟蹤數據插入/刪除/數據多次更新/DDL操作等。
示例:
insert into table testdb.test values("hangzhou",1);update testdb.test set b=2 where a="hangzhou";update testdb.test set b=3 where a="hangzhou";delete from testdb.test where a="hangzhou";
通過將binlog日志有序的回放到目標存儲中,從而實現對數據源的數據導出同步功能。
開源常見的CDC方案實現主要有兩種:
sqoop是一個開源的數據同步工具,它可以將數據庫的數據同步到HDFS/Hive中,支持全量同步和增量同步,用戶可以配置小時/天的調度作業來定時同步數據。
sqoop增量同步是一種侵入式的CDC方案,支持Last Modified和Append模式。
缺點:
直接jdbc請求源庫拉取數據,影響源庫性能
小時/天調度,實時性不高
無法同步源庫的刪除操作,Append模式還不支持數據更新操作
binlog日志可以通過一些工具實時同步到kafka等消息中間件中,然后通過Spark/Flink等流引擎實時的回放binlog到目標存儲(如Kudu/HBase等)。
缺點:
Kudu/HBase運維成本高
Kudu在數據量大的有穩定性問題, HBase不支持高吞吐的分析
Spark Streaming實現回放binlog邏輯復雜,使用java/scala代碼具有一定門檻
前面介紹了兩種常見的CDC方案,各自都有一些缺點。阿里云E-MapReduce團隊提供了一種新的CDC解決方案,利用自研的Streaming SQL搭配Delta Lake可以輕松實現CDC實時入湖。這套解決方案同時通過阿里云最新發布的數據湖構建(Data Lake Formation,DLF)服務提供一站式的入湖體驗。
Spark Streaming SQL在Spark Structured Streaming之上提供了SQL能力,降低了實時業務開發的門檻,使得離線業務實時化更簡單方便。
下面以實時消費SLS為例:
# 創建loghub源表 spark-sql> CREATE TABLE loghub_intput_tbl(content string) > USING loghub > OPTIONS > (...) # 創建delta目標表 spark-sql> CREATE TABLE delta_output_tbl(content string) > USING delta > OPTIONS > (...); # 創建流式SCAN spark-sql> CREATE SCAN loghub_table_intput_test_stream > ON loghub_intput_tbl > USING STREAM; # 將loghub源表數據插入delta目標表 spark-sql> INSERT INTO delta_output_tbl SELECT content FROM loghub_table_intput_test_stream;
Delta Lake是Databricks開源的一種數據湖格式,它在parquet格式之上,提供了ACID事務/元數據管理等能力,同時相比parquet具有更好的性能,能夠支持更豐富的數據應用場景(如數據更新/schema演化等)。
E-MapReduce團隊在開源Delta Lake基礎上做了很多功能和性能的優化,如小文件合并Optimize/DataSkipping/Zorder,SparkSQL/Streaming SQL/Hive/Presto深度集成Delta等。
Spark Streaming SQL提供了Merge Into 的語法,搭配Delta Lake的實時寫入能力,可以很方便的實現CDC實時入湖方案。
如上圖所示,只需要SQL就能完成CDC實時入湖。
看完上述內容,你們掌握Delta Lake如何實現CDC實時入湖的方法了嗎?如果還想學到更多技能或想了解更多相關內容,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。