您好,登錄后才能下訂單哦!
如何利用Prometheus Operator實現自定義指標監控,很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。
在過去的文章中,我們花了相當大的篇幅來聊關于監控的話題。這是因為當你正在管理Kubernetes集群時,一切都會以極快的速度發生變化。因此有一個工具來監控集群的健康狀態和資源指標極為重要。
在Rancher 2.5中,我們引入了基于Prometheus Operator的新版監控,它可以提供Prometheus以及相關監控組件的原生Kubernetes部署和管理。Prometheus Operator可以讓你監控集群節點、Kubernetes組件和應用程序工作負載的狀態和進程。同時,它還能夠通過Prometheus收集的指標來定義告警并且創建自定義儀表盤,通過Grafana可以輕松地可視化收集到的指標。
新版本的監控也采用prometheus-adapter,開發人員可以利用其基于自定義指標和HPA擴展他們的工作負載。
我們將探索如何利用Prometheus Operator來抓取自定義指標并利用這些指標進行高級工作負載管理。
在Rancher 2.5中安裝Prometheus極為簡單。僅需訪問Cluster Explorer -> Apps并安裝rancher-monitoring即可。
你需要了解以下默認設置:
prometheus-adapter
將會作為chart安裝的一部分啟用
ServiceMonitorNamespaceSelector
留為空,允許 Prometheus 在所有命名空間中收集 ServiceMonitors
安裝完成后,我們可以從Cluster Explorer訪問監控組件。
現在讓我們部署一個從應用層暴露自定義指標的示例工作負載。該工作負載暴露了一個簡單的應用程序,該應用程序已經使用Prometheus client_golang庫進行了檢測,并在/metric
端點上提供了一些自定義指標。
它有兩個指標:
http_requests_total
http_request_duration_seconds
以下manifest部署了工作負載、相關服務以及訪問該工作負載的ingress:
apiVersion: apps/v1 kind: Deployment metadata: labels: app.kubernetes.io/name: prometheus-example-app name: prometheus-example-app spec: replicas: 1 selector: matchLabels: app.kubernetes.io/name: prometheus-example-app template: metadata: labels: app.kubernetes.io/name: prometheus-example-app spec: containers: - name: prometheus-example-app image: gmehta3/demo-app:metrics ports: - name: web containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: prometheus-example-app labels: app.kubernetes.io/name: prometheus-example-app spec: selector: app.kubernetes.io/name: prometheus-example-app ports: - protocol: TCP port: 8080 targetPort: 8080 name: web --- apiVersion: networking.k8s.io/v1beta1 kind: Ingress metadata: name: prometheus-example-app spec: rules: - host: hpa.demo http: paths: - path: / backend: serviceName: prometheus-example-app servicePort: 8080
ServiceMonitor是一個自定義資源定義(CRD),可以讓我們聲明性地定義如何監控一組動態服務。
你可以訪問以下鏈接查看完整的ServiceMonitor規范:
https://github.com/prometheus-operator/prometheus-operator/blob/master/Documentation/api.md#servicemonitor
現在,我們來部署ServiceMonitor,Prometheus用它來收集組成prometheus-example-app Kubernetes服務的pod。
kind: ServiceMonitor metadata: name: prometheus-example-app spec: selector: matchLabels: app.kubernetes.io/name: prometheus-example-app endpoints: - port: web
如你所見,現在用戶可以在Rancher監控中瀏覽ServiceMonitor。
不久之后,新的service monitor和服務相關聯的pod應該會反映在Prometheus服務發現中。
我們也能夠在Prometheus中看到指標。
在Rancher 2.5中,監控可以讓用戶將Grafana儀表盤存儲為cattle-dashboards
命名空間中的ConfigMaps。
用戶或集群管理員現在可以在這一命名空間中添加更多的儀表盤以擴展Grafana的自定義儀表盤。
Dashboard ConfigMap Example
apiVersion: v1 kind: ConfigMap metadata: name: prometheus-example-app-dashboard namespace: cattle-dashboards labels: grafana_dashboard: "1" data: prometheus-example-app.json: | { "annotations": { "list": [ { "builtIn": 1, "datasource": "-- Grafana --", "enable": true, "hide": true, "iconColor": "rgba(0, 211, 255, 1)", "name": "Annotations & Alerts", "type": "dashboard" } ] }, "editable": true, "gnetId": null, "graphTooltip": 0, "links": [], "panels": [ { "aliasColors": {}, "bars": false, "dashLength": 10, "dashes": false, "datasource": null, "fieldConfig": { "defaults": { "custom": {} }, "overrides": [] }, "fill": 1, "fillGradient": 0, "gridPos": { "h": 9, "w": 12, "x": 0, "y": 0 }, "hiddenSeries": false, "id": 2, "legend": { "avg": false, "current": false, "max": false, "min": false, "show": true, "total": false, "values": false }, "lines": true, "linewidth": 1, "nullPointMode": "null", "percentage": false, "pluginVersion": "7.1.5", "pointradius": 2, "points": false, "renderer": "flot", "seriesOverrides": [], "spaceLength": 10, "stack": false, "steppedLine": false, "targets": [ { "expr": "rate(http_requests_total{code=\"200\",service=\"prometheus-example-app\"}[5m])", "instant": false, "interval": "", "legendFormat": "", "refId": "A" } ], "thresholds": [], "timeFrom": null, "timeRegions": [], "timeShift": null, "title": "http_requests_total_200", "tooltip": { "shared": true, "sort": 0, "value_type": "individual" }, "type": "graph", "xaxis": { "buckets": null, "mode": "time", "name": null, "show": true, "values": [] }, "yaxes": [ { "format": "short", "label": null, "logBase": 1, "max": null, "min": null, "show": true }, { "format": "short", "label": null, "logBase": 1, "max": null, "min": null, "show": true } ], "yaxis": { "align": false, "alignLevel": null } }, { "aliasColors": {}, "bars": false, "dashLength": 10, "dashes": false, "datasource": null, "description": "", "fieldConfig": { "defaults": { "custom": {} }, "overrides": [] }, "fill": 1, "fillGradient": 0, "gridPos": { "h": 8, "w": 12, "x": 0, "y": 9 }, "hiddenSeries": false, "id": 4, "legend": { "avg": false, "current": false, "max": false, "min": false, "show": true, "total": false, "values": false }, "lines": true, "linewidth": 1, "nullPointMode": "null", "percentage": false, "pluginVersion": "7.1.5", "pointradius": 2, "points": false, "renderer": "flot", "seriesOverrides": [], "spaceLength": 10, "stack": false, "steppedLine": false, "targets": [ { "expr": "rate(http_requests_total{code!=\"200\",service=\"prometheus-example-app\"}[5m])", "interval": "", "legendFormat": "", "refId": "A" } ], "thresholds": [], "timeFrom": null, "timeRegions": [], "timeShift": null, "title": "http_requests_total_not_200", "tooltip": { "shared": true, "sort": 0, "value_type": "individual" }, "type": "graph", "xaxis": { "buckets": null, "mode": "time", "name": null, "show": true, "values": [] }, "yaxes": [ { "format": "short", "label": null, "logBase": 1, "max": null, "min": null, "show": true }, { "format": "short", "label": null, "logBase": 1, "max": null, "min": null, "show": true } ], "yaxis": { "align": false, "alignLevel": null } } ], "schemaVersion": 26, "style": "dark", "tags": [], "templating": { "list": [] }, "time": { "from": "now-15m", "to": "now" }, "timepicker": { "refresh_intervals": [ "5s", "10s", "30s", "1m", "5m", "15m", "30m", "1h", "2h", "1d" ] }, "timezone": "", "title": "prometheus example app", "version": 1 }
現在,用戶應該能夠在Grafana中訪問prometheus example app的儀表盤。
這一部分假設你已經將prometheus-adapter
作為監控的一部分安裝完畢了。實際上,在默認情況下,監控安裝程序會安裝prometheus-adapter。
用戶現在可以創建一個HPA spec,如下所示:
apiVersion: autoscaling/v2beta2 kind: HorizontalPodAutoscaler metadata: name: prometheus-example-app-hpa spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: prometheus-example-app minReplicas: 1 maxReplicas: 5 metrics: - type: Object object: describedObject: kind: Service name: prometheus-example-app metric: name: http_requests target: averageValue: "5" type: AverageValue
你可以查看以下鏈接獲取關于HPA的更多信息:
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
我們將使用自定義的http_requests_total指標來執行pod自動伸縮。
現在我們可以生成一個樣本負載來查看HPA的運行情況。我可以使用hey
進行同樣的操作。
hey -c 10 -n 5000 http://hpa.demo
看完上述內容是否對您有幫助呢?如果還想對相關知識有進一步的了解或閱讀更多相關文章,請關注億速云行業資訊頻道,感謝您對億速云的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。