91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Hadoop的ResourceManager怎么恢復

發布時間:2021-12-04 15:53:04 來源:億速云 閱讀:327 作者:iii 欄目:大數據

本篇內容介紹了“Hadoop的ResourceManager怎么恢復”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!

ResourceManager 的恢復

當ResourceManager 掛掉重啟后,為了使之前的任務能夠繼續執行,而不是重新執行。勢必需要yarn記錄應用運行過程的狀態。

運行狀態可以存儲在

  • ZooKeeper

  • FileSystem 比如hdfs

  • LevelDB

使用zookeeper做為狀態存儲的典型配置為

<property>
   <description>Enable RM to recover state after starting. If true, then
   yarn.resourcemanager.store.class must be specified</description>
   <name>yarn.resourcemanager.recovery.enabled</name>
   <value>true</value>
 </property>

 <property>
   <description>The class to use as the persistent store.</description>
   <name>yarn.resourcemanager.store.class</name>
   <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
 </property>

 <property>
   <description>Comma separated list of Host:Port pairs. Each corresponds to a ZooKeeper server
   (e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002") to be used by the RM for storing RM state.
   This must be supplied when using org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore
   as the value for yarn.resourcemanager.store.class</description>
   <name>hadoop.zk.address</name>
   <value>127.0.0.1:2181</value>
 </property>

Resource Manager的HA

基于zookeeper實現active 和standby 的多個ResourceManager之間的自動故障切換。 active Resource Manager只能有一個,而standby 可以有多個

Hadoop的ResourceManager怎么恢復

為了防止故障自動轉移時的腦裂,推薦上面的ResourceManager recovery 狀態存儲使用也使用zk。 同時關閉zk的zookeeper.DigestAuthenticationProvider.superDigest配置,避免zk的管理員訪問到YARN application/user credential information

一個demo配置如下

<property>
  <name>yarn.resourcemanager.ha.enabled</name>
  <value>true</value>
</property>
<property>
  <name>yarn.resourcemanager.cluster-id</name>
  <value>cluster1</value>
</property>
<property>
  <name>yarn.resourcemanager.ha.rm-ids</name>
  <value>rm1,rm2</value>
</property>
<property>
  <name>yarn.resourcemanager.hostname.rm1</name>
  <value>master1</value>
</property>
<property>
  <name>yarn.resourcemanager.hostname.rm2</name>
  <value>master2</value>
</property>
<property>
  <name>yarn.resourcemanager.webapp.address.rm1</name>
  <value>master1:8088</value>
</property>
<property>
  <name>yarn.resourcemanager.webapp.address.rm2</name>
  <value>master2:8088</value>
</property>
<property>
  <name>hadoop.zk.address</name>
  <value>zk1:2181,zk2:2181,zk3:2181</value>
</property>

文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html

YARN Node Labels

基于Label,將一個Yarn管理的集群,劃分為多個分區。不同的queue可以使用不同的分區。

文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/NodeLabel.html

YARN Node Attributes

對Node Manager定義一組屬性值,使得應用程序能夠基于這些屬性值,來選擇Node Mananger, 并將其應用的container部署到上面

文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/NodeAttributes.html

Web Application Proxy

集群中運行應用的application master 需要提供一些web ui給ResourceManager, 以便其統一管理。但集群中可能有惡意應用,提供了具有安全風險的web ui. 為了降低安全風險,yarn 使用一個名為Web Application Proxy的應用。擁有接管Application Master提供給的web ui鏈接,將請求中的cookies 進行剝離,同時將不安全的鏈接標記出來。

默認情況下Web Application Proxy 是作為Resource Manager的一部分啟動。不需要單獨配置。如果要單獨部署,需要額外配置。 文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/WebApplicationProxy.html

YARN Timeline Server

能夠存儲和查詢當前、歷史的應用執行信息。TimeLine Server中的存儲數據結構為

Hadoop的ResourceManager怎么恢復

  • timeline Domain 對應一個用戶的應用列表

  • Time Entity 定義一個應用

  • Timeline Events定義該應用的執行事件,比如應用啟動,應用執行,應用結束等

Timeline Server分為V1和V2版本,V1版本將數據存儲在levelDb中,v2版將數據存儲在hbase中

文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/TimelineServer.html

基于yarn的API,編寫一個可以部署到yarn集群執行的應用

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/WritingYarnApplications.html

應用安全

yarn為了保證應用的運行安全,有一系列的機制先限制應用的權限之類的

文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YarnApplicationSecurity.html

Node Manager

前面說了ResourceMananger 需要重啟后,能從原地繼續執行任務。Node Mananger在掛掉重啟后,也需要有相應的恢復特性。 其具體的配置,參見文檔。

文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/NodeManager.html

Health Checker Service

Node Mananger的健康檢查服務,其提供兩種健康檢查器

  • Disk Checker 檢查node manager的磁盤健康狀況,并基于此上報給Resource Manager

  • External Health Script 管理員可以指定一些自定義的健康檢查腳本,供Node Manager的 Health Checker Service調用

CGroups with YARN

yarn使用linux的CGroups實現資源隔離和控制,相關配置見文檔: https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/NodeManagerCgroups.html

Secure Containers

將各應用container 限制在提交他的用戶權限下,不同用戶提交的應用container 不能訪問彼此的文件、文件夾。具體配置 文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/SecureContainer.html

移除節點

有兩種方式:

  • normal 直接把要移除的節點從集群中摘除

  • Gracefully 等待節點上的任務執行完畢后摘除 文檔:https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/GracefulDecommission.html

Opportunistic Containers 機會主義容器

yarn一般只在對應的Node manager有資源時,才會將一個任務對應的container 分配到該NM. 但開啟Opportunistic Containers后,即便對應的node manager沒有資源,也會將contaienr 分配到NM,等到NM空閑時,馬上開始執行,是為機會主義者。這在一定程度能提高集群的資源利用率。 文檔:

配置部署

部署用戶。按照Hadoop官方的建議。yarn相關組件,使用yarn用來管理 Hadoop的ResourceManager怎么恢復

基本部署方式

啟動RM

$HADOOP_HOME/bin/yarn --daemon start resourcemanager

啟動NM

$HADOOP_HOME/bin/yarn --daemon start nodemanager

啟動proxyServer

$HADOOP_HOME/bin/yarn --daemon start proxyserver

切換到mapred用戶下,啟動historyserver

$HADOOP_HOME/bin/mapred --daemon start historyserver
高效能部署

yarn本身由多個組件組成,且有些組件還有多個節點,比如nodemanager,一次啟動去到多個機器上執行是件很繁瑣的事情。hadoop發型包,提供了sbin/start-yarn.shsbin/stop-yarn.sh兩個腳本去啟停yarn相關的所有組件:比如nodemanager、resourcemanager、proxyserver 。

他實現的原理是,基于hadoop安裝包中的/opt/hadoop-3.2.1/etc/hadoop/workers文件,去登錄到相應的機器,完成組件的執行。workers中定義了所有datanode的機器host。 登錄方式是基于SSH的免密登錄方式,具體配置參見:https://www.cnblogs.com/niceshot/p/13019823.html

如果發起腳本執行的機器,本身也需要部署一個nodemanager。那么他需要配置自己對自己的SSH免密登錄

通yarn-site.xml , 腳本已經可以知道resource manager的組件機器。所以workers文件中,只需要設置所有的node manager的機器host

一般yarn的node manager會跟hdfs的 datanode部署在一起,所以hdfs的批量啟停,也是用的這個workers文件。

但上面說的$HADOOP_HOME/bin/mapred --daemon start historyserver不屬于,只屬于mapreduce,所以還是要單獨啟停,通過yarn的相關腳本是不能管理它的。之所以將這個historyserver放到yarn的文檔中來寫,是為了偷懶,沒單獨搞一個mr的wend

一些錯誤

錯誤1

在yarn的管理界面,發現提交的sql,執行有以下錯誤

yarn錯誤
錯誤: 找不到或無法加載主類 org.apache.hadoop.mapreduce.v2.app.MRAppMaster

問題原因是,yarn的類路徑有問題。通過hadoop官方的yarn-default.xml文件得知,yarn加載的類路徑配置yarn.application.classpath的默認值為

$HADOOP_CONF_DIR, $HADOOP_COMMON_HOME/share/hadoop/common/*, $HADOOP_COMMON_HOME/share/hadoop/common/lib/*, $HADOOP_HDFS_HOME/share/hadoop/hdfs/*, $HADOOP_HDFS_HOME/share/hadoop/hdfs/lib/*, $HADOOP_YARN_HOME/share/hadoop/yarn/*, $HADOOP_YARN_HOME/share/hadoop/yarn/lib/* For Windows: %HADOOP_CONF_DIR%, %HADOOP_COMMON_HOME%/share/hadoop/common/*, %HADOOP_COMMON_HOME%/share/hadoop/common/lib/*, %HADOOP_HDFS_HOME%/share/hadoop/hdfs/*, %HADOOP_HDFS_HOME%/share/hadoop/hdfs/lib/*, %HADOOP_YARN_HOME%/share/hadoop/yarn/*, %HADOOP_YARN_HOME%/share/hadoop/yarn/lib/*

路徑中的許多環境變量都沒有配置。解決辦法有2

  1. 將對應的環境變量配置上,以使yarn的默認配置能夠正常加載上。推薦這種

  2. 使用hadoop classpath命令,看下hadoop使用的類路徑都有哪些,將其拷貝出來,在yarn-site.xml中配置,舉例



<property> <name>yarn.application.classpath</name> <value>/opt/hadoop-3.2.1/etc/hadoop:/opt/hadoop-3.2.1/share/hadoop/common/lib/*:/opt/hadoop-3.2.1/share/hadoop/common/*:/opt/hadoop-3.2.1/share/hadoop/hdfs:/opt/hadoop-3.2.1/share/hadoop/hdfs/lib/*:/opt/hadoop-3.2.1/share/hadoop/hdfs/*:/opt/hadoop-3.2.1/share/hadoop/mapreduce/lib/*:/opt/hadoop-3.2.1/share/hadoop/mapreduce/*:/opt/hadoop-3.2.1/share/hadoop/yarn:/opt/hadoop-3.2.1/share/hadoop/yarn/lib/*:/opt/hadoop-3.2.1/share/hadoop/yarn/*</value> </property> ``` ### 錯誤2 通過historyserver, 在Mapreduce階段,看到異常

org.apache.hadoop.yarn.exceptions.InvalidAuxServiceException: The auxService:mapreduce_shuffle does not exist at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at

原因,這是因為mr使用了mapreduce_shuffle輔助服務,但yarn沒有配置。 解決辦法,同樣是修改yarn-site.xml,在其中加入以下配置

<property>
	<name>yarn.nodemanager.aux-services</name>
	<value>mapreduce_shuffle</value>
</property>
<property>
	<name>yarn.nodemanager.aux-services.mapreduce_shuffle.class</name>
	<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

錯誤3

ontainer [pid=26153,containerID=container_e42_1594730232763_0121_02_000006] is running 598260224B beyond the 'VIRTUAL' memory limit. Current usage: 297.5 MB of 1 GB physical memory used; 2.7 GB of 2.1 GB virtual memory used. Killing container.
Dump of the process-tree for container_e42_1594730232763_0121_02_000006 :
        |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE

錯誤的意思是,yarn分配給container的虛擬內存,超過了限制。原因是,一個container使用的內存,除了物理內存,還可以使用操作系統的虛擬內存,也即硬盤。

container分為兩種類型,map 和reduce。 決定map的container的物理內存大小為mapreduce.map.memory.mb 決定reduce的物理內存為mapreduce.reduce.memory.mb 決定map container所能申請的虛擬內存大小的公式是:mapreduce.map.memory.mb * yarn.nodemanager.vmem-pmem-ratio 決定reduce container所能申請的虛擬內存帶下是公式是:mapreduce.reduce.memory.mb * yarn.nodemanager.vmem-pmem-ratio

所以要解決虛擬內存超限有兩個辦法:

  • 增大container的物理內存大小。即增大mapreduce.map.memory.mbmapreduce.reduce.memory.mb

  • 增大虛擬內存申請的比率yarn.nodemanager.vmem-pmem-ratio

“Hadoop的ResourceManager怎么恢復”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!

向AI問一下細節
推薦閱讀:
  1. hadoop的HA
  2. Hadoop的RPC

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

安多县| 吕梁市| 孟州市| 屏东市| 勃利县| 辰溪县| 阿城市| 泾阳县| 贵溪市| 蓬溪县| 沭阳县| 大新县| 台中市| 濮阳县| 洱源县| 张家口市| 东明县| 福海县| 饶河县| 黄冈市| 威远县| 新田县| 京山县| 安丘市| 行唐县| 岫岩| 贺兰县| 祥云县| 兴安县| 新余市| 固阳县| 台北县| 湘乡市| 灌南县| 玛曲县| 安塞县| 泗洪县| 庄浪县| 高安市| 革吉县| 徐水县|