您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關Java8中怎么利用Stream實現函數式接口,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
函數式接口
什么是函數式接口?簡單來說就是只有一個抽象函數的接口。為了使得函數式接口的定義更加規范,java8 提供了@FunctionalInterface 注解告訴編譯器在編譯器去檢查函數式接口的合法性,以便在編譯器在編譯出錯時給出提示。為了更加規范定義函數接口,給出如下函數式接口定義規則:
有且僅有一個抽象函數
必須要有@FunctionalInterface 注解
可以有默認方法
可以看出函數式接口的編寫定義非常簡單,不知道大家有沒有注意到,其實我們經常會用到函數式接口,如Runnable 接口,它就是一個函數式接口:
@FunctionalInterface public interface Runnable { /** * When an object implementing interface <code>Runnable</code> is used * to create a thread, starting the thread causes the object's * <code>run</code> method to be called in that separately executing * thread. * <p> * The general contract of the method <code>run</code> is that it may * take any action whatsoever. * * @see java.lang.Thread#run() */ public abstract void run(); }
過去我們會使用匿名內部類來實現線程的執行體:
new Thread(new Runnable() { @Override public void run() { System.out.println("Hello FunctionalInterface"); } }).start();
現在我們使用Lambda 表達式,這里函數式接口的使用沒有體現函數式編程思想,這里輸出字符到標準輸出流中,產生了副作用,起到了簡化代碼的作用,當然還有裝B。
new Thread(()->{ System.out.println("Hello FunctionalInterface"); }).start();
Java8 util.function 包下自帶了43個函數式接口,大體分為以下幾類:
Consumer 消費接口
Function 功能接口
Operator 操作接口
Predicate 斷言接口
Supplier 生產接口
其他接口都是在此基礎上變形定制化罷了。
函數式接口詳細介紹
這里只介紹最基礎的函數式接口,至于它的變體只要明白了基礎自然就能夠明白。前篇:玩轉Java8中的 Stream 之從零認識 Stream
Consumer
消費者接口,就是用來消費數據的。
@FunctionalInterface public interface Consumer<T> { /** * Performs this operation on the given argument. * * @param t the input argument */ void accept(T t); /** * Returns a composed {@code Consumer} that performs, in sequence, this * operation followed by the {@code after} operation. If performing either * operation throws an exception, it is relayed to the caller of the * composed operation. If performing this operation throws an exception, * the {@code after} operation will not be performed. * * @param after the operation to perform after this operation * @return a composed {@code Consumer} that performs in sequence this * operation followed by the {@code after} operation * @throws NullPointerException if {@code after} is null */ default Consumer<T> andThen(Consumer<? super T> after) { Objects.requireNonNull(after); return (T t) -> { accept(t); after.accept(t); }; } }
Consumer 接口中有accept 抽象方法,accept接受一個變量,也就是說你在使用這個函數式接口的時候,給你提供了數據,你只要接收使用就可以了;andThen 是一個默認方法,接受一個Consumer 類型,當你對一個數據使用一次還不夠爽的時候,你還能再使用一次,當然你其實可以爽無數次,只要一直使用andThan方法。
Function
何為Function呢?比如電視機,給你帶來精神上的愉悅,但是它需要用電啊,電視它把電轉換成了你荷爾蒙,這就是Function,簡單電說,Function 提供一種轉換功能。
@FunctionalInterface public interface Function<T, R> { /** * Applies this function to the given argument. * * @param t the function argument * @return the function result */ R apply(T t); /** * Returns a composed function that first applies the {@code before} * function to its input, and then applies this function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param <V> the type of input to the {@code before} function, and to the * composed function * @param before the function to apply before this function is applied * @return a composed function that first applies the {@code before} * function and then applies this function * @throws NullPointerException if before is null * * @see #andThen(Function) */ default <V> Function<V, R> compose(Function<? super V, ? extends T> before) { Objects.requireNonNull(before); return (V v) -> apply(before.apply(v)); } /** * Returns a composed function that first applies this function to * its input, and then applies the {@code after} function to the result. * If evaluation of either function throws an exception, it is relayed to * the caller of the composed function. * * @param <V> the type of output of the {@code after} function, and of the * composed function * @param after the function to apply after this function is applied * @return a composed function that first applies this function and then * applies the {@code after} function * @throws NullPointerException if after is null * * @see #compose(Function) */ default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) { Objects.requireNonNull(after); return (T t) -> after.apply(apply(t)); } /** * Returns a function that always returns its input argument. * * @param <T> the type of the input and output objects to the function * @return a function that always returns its input argument */ static <T> Function<T, T> identity() { return t -> t; } }
Function 接口 最主要的就是apply 函數,apply 接受T類型數據并返回R類型數據,就是將T類型的數據轉換成R類型的數據,它還提供了compose、andThen、identity 三個默認方法,compose 接受一個Function,andThen也同樣接受一個Function,這里的andThen 與Consumer 的andThen 類似,在apply之后在apply一遍,compose 則與之相反,在apply之前先apply(這兩個apply具體處理內容一般是不同的),identity 起到了類似海關的作用,外國人想要運貨進來,總得交點稅吧,然后貨物才能安全進入中國市場,當然了想不想收稅還是你說了算的:。
Operator
可以簡單理解成算術中的各種運算操作,當然不僅僅是運算這么簡單,因為它只定義了運算這個定義,但至于運算成什么樣你說了算。由于沒有最基礎的Operator,這里將通過 BinaryOperator、IntBinaryOperator來理解Operator 函數式接口,先從簡單的IntBinaryOperator開始。
IntBinaryOperator
從名字可以知道,這是一個二元操作,并且是Int 類型的二元操作,那么這個接口可以做什么呢,除了加減乘除,還可以可以實現平方(兩個相同int 數操作起來不就是平方嗎),還是先看看它的定義吧:
@FunctionalInterface public interface IntBinaryOperator { /** * Applies this operator to the given operands. * * @param left the first operand * @param right the second operand * @return the operator result */ int applyAsInt(int left, int right); }
IntBinaryOperator 接口內只有一個applyAsInt 方法,其接收兩個int 類型的參數,并返回一個int 類型的結果,其實這個跟Function 接口的apply 有點像,但是這里限定了,只能是int類型。
BinaryOperator
BinaryOperator 二元操作,看起來它和IntBinaryOperator 是父子關系,實際上這兩者沒有半點關系,但他們在功能上還是有相似之處的:
@FunctionalInterface public interface BinaryOperator<T> extends BiFunction<T,T,T> { /** * Returns a {@link BinaryOperator} which returns the lesser of two elements * according to the specified {@code Comparator}. * * @param <T> the type of the input arguments of the comparator * @param comparator a {@code Comparator} for comparing the two values * @return a {@code BinaryOperator} which returns the lesser of its operands, * according to the supplied {@code Comparator} * @throws NullPointerException if the argument is null */ public static <T> BinaryOperator<T> minBy(Comparator<? super T> comparator) { Objects.requireNonNull(comparator); return (a, b) -> comparator.compare(a, b) <= 0 ? a : b; } /** * Returns a {@link BinaryOperator} which returns the greater of two elements * according to the specified {@code Comparator}. * * @param <T> the type of the input arguments of the comparator * @param comparator a {@code Comparator} for comparing the two values * @return a {@code BinaryOperator} which returns the greater of its operands, * according to the supplied {@code Comparator} * @throws NullPointerException if the argument is null */ public static <T> BinaryOperator<T> maxBy(Comparator<? super T> comparator) { Objects.requireNonNull(comparator); return (a, b) -> comparator.compare(a, b) >= 0 ? a : b; } }
BinaryOperator 是 BiFunction 生的,而IntBinaryOperator 是從石頭里蹦出來的,BinaryOperator 自身定義了minBy、maxBy默認方法,并且參數都是Comparator,就是根據傳入的比較器的比較規則找出最小最大的數據。
Predicate
斷言、判斷,對輸入的數據根據某種標準進行評判,最終返回boolean值:
@FunctionalInterface public interface Predicate<T> { /** * Evaluates this predicate on the given argument. * * @param t the input argument * @return {@code true} if the input argument matches the predicate, * otherwise {@code false} */ boolean test(T t); /** * Returns a composed predicate that represents a short-circuiting logical * AND of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code false}, then the {@code other} * predicate is not evaluated. * * <p>Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ANDed with this * predicate * @return a composed predicate that represents the short-circuiting logical * AND of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate<T> and(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) && other.test(t); } /** * Returns a predicate that represents the logical negation of this * predicate. * * @return a predicate that represents the logical negation of this * predicate */ default Predicate<T> negate() { return (t) -> !test(t); } /** * Returns a composed predicate that represents a short-circuiting logical * OR of this predicate and another. When evaluating the composed * predicate, if this predicate is {@code true}, then the {@code other} * predicate is not evaluated. * * <p>Any exceptions thrown during evaluation of either predicate are relayed * to the caller; if evaluation of this predicate throws an exception, the * {@code other} predicate will not be evaluated. * * @param other a predicate that will be logically-ORed with this * predicate * @return a composed predicate that represents the short-circuiting logical * OR of this predicate and the {@code other} predicate * @throws NullPointerException if other is null */ default Predicate<T> or(Predicate<? super T> other) { Objects.requireNonNull(other); return (t) -> test(t) || other.test(t); } /** * Returns a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)}. * * @param <T> the type of arguments to the predicate * @param targetRef the object reference with which to compare for equality, * which may be {@code null} * @return a predicate that tests if two arguments are equal according * to {@link Objects#equals(Object, Object)} */ static <T> Predicate<T> isEqual(Object targetRef) { return (null == targetRef) ? Objects::isNull : object -> targetRef.equals(object); } }
Predicate的test 接收T類型的數據,返回 boolean 類型,即對數據進行某種規則的評判,如果符合則返回true,否則返回false;Predicate接口還提供了 and、negate、or,與 取反 或等,isEqual 判斷兩個參數是否相等等默認函數。
Supplier
生產、提供數據:
@FunctionalInterface public interface Supplier<T> { /** * Gets a result. * * @return a result */ T get(); }
非常easy,get方法返回一個T類數據,可以提供重復的數據,或者隨機種子都可以,就這么簡單。
函數式接口實戰
Consumer
Consumer 用的太多了,不想說太多,如下:
public class Main { public static void main(String[] args) { Stream.of(1,2,3,4,5,6) .forEach(integer -> System.out.println(integer)); //輸出1,2,3,4,5,6 } }
這里使用標準輸出,還是產生了副作用,但是這種程度是可以允許的
Function
1.轉換,將字符串轉成長度
public class Main { public static void main(String[] args) { Stream.of("hello","FunctionalInterface") .map(e->e.length()) .forEach(System.out::println); } }
2.運算
public class FunctionTest { public static void main(String[] args) { public static void main(String[] args) { Function<Integer, Integer> square = integer -> integer * integer; //定義平方運算 List<Integer> list = new ArrayList<>(); list.add(1); list.add(2); list.add(3); list.add(4); list.stream() .map(square.andThen(square)) //四次方 .forEach(System.out::println); System.out.println("------"); list.stream() .map(square.compose(e -> e - 1)) //減一再平方 .forEach(System.out::println); System.out.println("------"); list.stream().map(square.andThen(square.compose(e->e/2))) //先平方然后除2再平方 .forEach(System.out::println); } }
結果如圖:
Operator
1.BinaryOperator
這里實現找最大值:
public class BinaryOperatorTest { public static void main(String[] args) { Stream.of(2,4,5,6,7,1) .reduce(BinaryOperator.maxBy(Comparator.comparingInt(Integer::intValue))).ifPresent(System.out::println); } }
Comparator 后期會講到
2.IntOperator
這里實現累加功能:
public class BinaryOperatorTest { public static void main(String[] args) { IntBinaryOperator intBinaryOperator = (e1, e2)->e1+e2; //定義求和二元操作 IntStream.of(2,4,5,6,7,1) .reduce(intBinaryOperator).ifPresent(System.out::println); } }
Predicate
篩選出大于0最小的兩個數
public class Main { public static void main(String[] args) { IntStream.of(200,45,89,10,-200,78,94) .filter(e->e>0) //過濾小于0的數 .sorted() //自然順序排序 .limit(2) //取前兩個 .forEach(System.out::println); } }
Supplier
這里一直生產2這個數字,為了能停下來,使用limit
public class Main { public static void main(String[] args) { Stream.generate(()->2) .limit(10) .forEach(System.out::println); } }
如圖:
上述就是小編為大家分享的Java8中怎么利用Stream實現函數式接口了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。