91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

pandas如何提升計算效率

發布時間:2021-05-30 17:59:32 來源:億速云 閱讀:224 作者:小新 欄目:開發技術

這篇文章給大家分享的是有關pandas如何提升計算效率的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。

前言

Pandas是為一次性處理整個行或列的矢量化操作而設計的,循環遍歷每個單元格、行或列并不是它的設計用途。所以,在使用Pandas時,你應該考慮高度可并行化的矩陣運算。

一、避免使用for循環

盡量使用列號或者行號進行矩陣檢索,避免使用for循環。

1.1使用for循環

import os
import pandas as pd
import datetime

path = r'E:\科研文件\shiyan\LZQ\LZQ_all_sampledata.csv'
def read_csv(target_csv):
    target = pd.read_csv(path,header=None,sep=',')
    return target

start_time = datetime.datetime.now()
a = read_csv(path)
for i in range(10000):
    b = a.iloc[i]
end_time = datetime.datetime.now()

print(end_time-start_time)

耗時:0:00:02.455211

1.2使用行號檢索

path = r'E:\科研文件\shiyan\LZQ\LZQ_all_sampledata.csv'

def read_csv(target_csv):
    target = pd.read_csv(path,header=None,sep=',')
    return target

start_time = datetime.datetime.now()

a = read_csv(path)

b = a.iloc[10000]

end_time = datetime.datetime.now()

print(end_time-start_time)

耗時:0:00:00.464756

二、使用for循環的條件下提高效率

2.0 如果必須使用for循環如何提高效率

我們可以做的最簡單但非常有價值的加速是使用Pandas的內置 .iterrows() 函數。

在上一節中編寫for循環時,我們使用了 range() 函數。然而,當我們在Python中對大范圍的值進行循環時,生成器往往要快得多。

Pandas的 .iterrows() 函數在內部實現了一個生成器函數,該函數將在每次迭代中生成一行Dataframe。更準確地說,.iterrows() 為DataFrame中的每一行生成(index, Series)的對(元組)。這實際上與在原始Python中使用 enumerate() 之類的東西是一樣的,但運行速度要快得多!

生成器(Generators)
生成器函數允許你聲明一個行為類似迭代器的函數,也就是說,它可以在for循環中使用。這大大簡化了代碼,并且比簡單的for循環更節省內存。

當你想要處理一個龐大的列表時,比如10億個浮點數,問題就出現了。使用for循環,在內存中創建了大量的內存huge列表,并不是每個人都有無限的RAM來存儲這樣的東西!

生成器將創建元素時,僅在需要時將它們存儲在內存中。一次一個。這意味著,如果必須創建10億個浮點數,那么只能一次將它們存儲在內存中。Python中的range()函數使用生成器來構建列表。

也就是說,如果你想多次迭代列表并且它足夠小以適應內存,那么使用for循環和range函數會更好。這是因為每次訪問list值時,生成器和range都會重新生成它們,而range是一個靜態列表,并且內存中已存在整數以便快速訪問。

2.1使用range

import os
import pandas as pd
import datetime

path = r'E:\科研文件\shiyan\LZQ\LZQ_all_sampledata.csv'

def read_csv(target_csv):
    target = pd.read_csv(path,header=None,sep=',')
    return target

start_time = datetime.datetime.now()

a = read_csv(path)

for data_row in range(a.shape[0]):
    b = a.iloc[data_row]

end_time = datetime.datetime.now()

print(end_time-start_time)

耗時:0:00:07.642816

2.2使用 .iterrows() 代替 range

import os
import pandas as pd
import datetime
path = r'E:\科研文件\shiyan\LZQ\LZQ_all_sampledata.csv'

def read_csv(target_csv):
    target = pd.read_csv(path,header=None,sep=',')
    return target

start_time = datetime.datetime.now()

a = read_csv(path)

for index,data_row in a.iterrows():
    b = data_row

end_time = datetime.datetime.now()

print(end_time-start_time)

耗時:0:00:03.513161

三、使用.apply

iterrows()函數極大地提高了速度,但我們還遠遠沒有完成。請始終記住,當使用為向量操作設計的庫時,可能有一種方法可以在完全沒有for循環的情況下最高效地完成任務。

為我們提供此功能的Pandas功能是 .apply() 函數。apply()函數接受另一個函數作為輸入,并沿著DataFrame的軸(行、列等)應用它。在傳遞函數的這種情況下,lambda通常可以方便地將所有內容打包在一起。

感謝各位的閱讀!關于“pandas如何提升計算效率”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

荔浦县| 沙田区| 湾仔区| 邹平县| 云安县| 垦利县| 南京市| 屏东市| 彭泽县| 滦平县| 英吉沙县| 茌平县| 开远市| 武邑县| 永修县| 锡林浩特市| 鄂托克旗| 乌拉特中旗| 曲阜市| 武清区| 彭阳县| 山东| 比如县| 德保县| 阳西县| 应城市| 安达市| 新河县| 平远县| 常州市| 会东县| 荥经县| 永丰县| 蒙自县| 三门县| 周至县| 含山县| 金沙县| 普陀区| 昭觉县| 海兴县|