91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何使用numpy.where() 和np.argsort()方法

發布時間:2021-05-10 17:03:09 來源:億速云 閱讀:201 作者:Leah 欄目:開發技術

如何使用numpy.where() 和np.argsort()方法?很多新手對此不是很清楚,為了幫助大家解決這個難題,下面小編將為大家詳細講解,有這方面需求的人可以來學習下,希望你能有所收獲。

numpy.where() 有兩種用法:

1. np.where(condition, x, y)

滿足條件(condition),輸出x,不滿足輸出y。

如果是一維數組,相當于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1,  1,  1,  1,  1,  1,  1,  1,  1,  1])  # 0為False,所以第一個輸出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -1,  1,  1,  1,  1])

>>> np.where([[True,False], [True,True]],    # 官網上的例子
    [[1,2], [3,4]],
             [[9,8], [7,6]])
array([[1, 8],
    [3, 4]])

上面這個例子的條件為[[True,False], [True,False]],分別對應最后輸出結果的四個值。第一個值從[1,9]中選,因為條件為True,所以是選1。第二個值從[2,8]中選,因為條件為False,所以選8,后面以此類推。類似的問題可以再看個例子:

>>> a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
             [["chosen","not chosen"], ["chosen","not chosen"]],
             [["not chosen","chosen"], ["not chosen","chosen"]])

array([['chosen', 'chosen'],
       ['chosen', 'chosen']], dtype='<U10')

2. np.where(condition)

只有條件 (condition),沒有x和y,則輸出滿足條件 (即非0) 元素的坐標 (等價于numpy.nonzero)。這里的坐標以tuple的形式給出,通常原數組有多少維,輸出的tuple中就包含幾個數組,分別對應符合條件元素的各維坐標。

>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5)    # 返回索引
(array([2, 3, 4]),)   
>>> a[np.where(a > 5)]     # 等價于 a[a>5]
array([ 6,  8, 10])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

上面這個例子條件中[[0,1],[1,0]]的真值為兩個1,各自的第一維坐標為[0,1],第二維坐標為[1,0] 。

下面看個復雜點的例子:

>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])

>>> np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
 array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))


# 符合條件的元素為
    [ 6,  7,  8]],

      [[ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17]],

      [[18, 19, 20],
       [21, 22, 23],
       [24, 25, 26]]]

所以np.where會輸出每個元素的對應的坐標,因為原數組有三維,所以tuple中有三個數組。

需要注意的一點是,輸入的不能直接是list,需要轉為array或者為array才行。比如range(10)和np.arange(10)后者返回的是數組,使用np.where才能達到效果。

np.argsort()的用法

numpy.argsort(a, axis=-1, kind='quicksort', order=None)

argsort(a)#獲取a從小到大排列的數組

argsort(-a)#獲取a從大到小排列的數組

argmin(a)#獲取a最小值下標

argmax(a)#獲取a最大值下標

功能: 將矩陣a按照axis排序,并返回排序后的下標

參數: a:輸入矩陣, axis:需要排序的維度

返回值: 輸出排序后的下標

(一維數組)

import numpy as np
x = np.array([1,4,3,-1,6,9])
x.argsort()
# array([3, 0, 1, 2, 4, 5], dtype=int64)

可以發現,argsort()是將X中的元素從小到大排序后,提取對應的索引index,然后輸出到y

如x[3]=-1最小,x[5]=9最大

所以取數組x的最小值可以寫成:

x[x.argsort()[0]]

或者用argmin()函數

x[x.argmin()]

數組x的最大值,寫成:

x[x.argsort()[-1]]  # -1代表從后往前反向的索引

或者用argmax()函數,不再詳述

x[x.argmax()]

輸出排序后的數組

 x[x.argsort()]
# 或
x[np.argsort(x)]

(二維數組)

x = np.array([[1,5,4],[-1,6,9]])
# [[ 1  5  4]
# [-1  6  9]]

沿著行向下(每列)的元素進行排序

np.argsort(x,axis=0)
# array([[1, 0, 0],
#        [0, 1, 1]], dtype=int64)

沿著列向右(每行)的元素進行排序

np.argsort(x,axis=1)
# array([[0, 2, 1],
#        [0, 1, 2]], dtype=int64)

補充:Numpy.unravel_index()和Numpy.argsort()

由于編程和文筆都較差,寫的不好請見諒...

今天下午學習LDA模型的python實現,其中用到了Numpy庫,想詳細了解用到的每個函數,便在網上找資料。

其中遇到了Numpy.unravel_index()和Numpy.argsort(),看了好半天才弄懂orz心血來潮記錄一下

首先,附上英文官方文檔。https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.argsort.html和https://docs.scipy.org/doc/numpy/reference/generated/numpy.unravel_index.html

講講我對Numpy.argsort()的理解:

numpy.argsort(a, axis=-1, kind='quicksort', order=None)

參數說明:a要排序的數組,

axis整型或者None,如果是None,數組將變成扁平數組(即變成一行數組)

kind排序算法,快排,歸并排序,堆排序...

order自定義字段順序

返回: index_array :n維下標數組

實例:一維數組

如何使用numpy.where() 和np.argsort()方法

二維數組

如何使用numpy.where() 和np.argsort()方法

然后講講我對numpy.unravel_index的理解~

numpy.unravel_index(indices, dims, order='C')

參數說明:indices數組

dims數組的維度大小

order:{C,F}(C行為主,F列為主)

返回: unraveled_coords為n維數組的元組

實例: 這個地方想了好久才明白T T

如何使用numpy.where() 和np.argsort()方法

看完上述內容是否對您有幫助呢?如果還想對相關知識有進一步的了解或閱讀更多相關文章,請關注億速云行業資訊頻道,感謝您對億速云的支持。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

阳东县| 信阳市| 贵港市| 钦州市| 乳源| 枝江市| 长寿区| 栾川县| 辽阳市| 镇坪县| 娄烦县| 永川市| 天祝| 锦屏县| 通州区| 淄博市| 岑巩县| 嘉峪关市| 乐业县| 阳江市| 南丹县| 电白县| 曲靖市| 兴义市| 蕉岭县| 资溪县| 修武县| 淮北市| 阜城县| 萨迦县| 鹤壁市| 乌拉特后旗| 丹巴县| 安图县| 榆林市| 周宁县| 石楼县| 鹿邑县| 巴青县| 海安县| 汝南县|