91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

利用Python怎么創建一個神經網絡

發布時間:2021-01-04 16:24:13 來源:億速云 閱讀:196 作者:Leah 欄目:開發技術

這期內容當中小編將會給大家帶來有關利用Python怎么創建一個神經網絡,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。

步驟1: 導入 NumPy、 Scikit-learn 和 Matplotlib

import numpy as np
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt

我們將在這個項目中使用上述三個庫。NumPy 將用于創建向量和矩陣以及數學操作。Scikit-learn 將用于縮放數據,Matplotlib 將用于在神經網絡訓練期間繪圖。

步驟2: 創建一個訓練和測試數據集

神經網絡在大型和小型數據集的學習趨勢方面都很擅長。然而,數據科學家必須意識到過擬合的危險,這在使用小數據集的項目中更為明顯。過擬合是當一個算法訓練和建模過于接近一組數據點,以至于它不能很好地推廣到新的數據點。

通常情況下,過擬合的機器學習模型在訓練的數據集上有很高的準確性,但是作為一個數據科學家,目標通常是盡可能精確地預測新的數據點。為了確保根據預測新數據點的好壞來評估模型,而不是根據對當前數據點的建模好壞來評估模型,通常將數據集拆分為一個訓練集和一個測試集(有時是一個驗證集)。

input_train = np.array([[0, 1, 0], [0, 1, 1], [0, 0, 0], 
   [10, 0, 0], [10, 1, 1], [10, 0, 1]])
output_train = np.array([[0], [0], [0], [1], [1], [1]])
input_pred = np.array([1, 1, 0])
 
 
input_test = np.array([[1, 1, 1], [10, 0, 1], [0, 1, 10], 
   [10, 1, 10], [0, 0, 0], [0, 1, 1]])
output_test = np.array([[0], [1], [0], [1], [0], [0]])

在這個簡單的神經網絡中,我們將1x3向量分類,10作為第一個元素。使用 NumPy 的 array 函數創建輸入和輸出訓練集和測試集,并創建 input_pred 以測試稍后將定義的 prediction 函數。訓練和測試數據由6個樣本組成,每個樣本具有3個特征,由于輸出已經給出,我們理解這是監督式學習的一個例子。

第三步: 擴展數據集

許多機器學習模型不能理解例如單位之間的區別,自然而然地對高度的特征應用更多的權重。這會破壞算法預測新數據點的能力。此外,訓練具有高強度特征的機器學習模型將會比需要的慢,至少如果使用梯度下降法。這是因為當輸入值在大致相同的范圍內時,梯度下降法收斂得更快。

scaler = MinMaxScaler()
input_train_scaled = scaler.fit_transform(input_train)
output_train_scaled = scaler.fit_transform(output_train)
input_test_scaled = scaler.fit_transform(input_test)
output_test_scaled = scaler.fit_transform(output_test)

在我們的訓練和測試數據集中,這些值的范圍相對較小,因此可能沒有必要進行特征擴展。然而,這樣可以使得小伙伴們使用自己喜歡的數字,而不需要更改太多的代碼。由于 Scikit-learn 包及其 MinMaxScaler 類,在 Python 中實現特征伸縮非常容易。只需創建一個 MinMaxScaler 對象,并使用 fit_transform 函數將非縮放數據作為輸入,該函數將返回相同的縮放數據。Scikit-learn 包中還有其他縮放功能,我鼓勵您嘗試這些功能。

第四步: 創建一個神經網絡類

要熟悉神經網絡的所有元素,最簡單的方法之一就是創建一個神經網絡類。這樣一個類應該包括所有的變量和函數,將是必要的神經網絡工作正常。

class NeuralNetwork():
 def __init__(self, ):
 self.inputSize = 3
 self.outputSize = 1
 self.hiddenSize = 3
 
 
 self.W1 = np.random.rand(self.inputSize, self.hiddenSize)
 self.W2 = np.random.rand(self.hiddenSize, self.outputSize)
 
 
 self.error_list = []
 self.limit = 0.5
 self.true_positives = 0
 self.false_positives = 0
 self.true_negatives = 0
 self.false_negatives = 0
 
 
 def forward(self, X):
 self.z = np.matmul(X, self.W1)
 self.z2 = self.sigmoid(self.z)
 self.z3 = np.matmul(self.z2, self.W2)
 o = self.sigmoid(self.z3)
 return o
 
 
 def sigmoid(self, s):
 return 1 / (1 + np.exp(-s))
 
 
 def sigmoidPrime(self, s):
 return s * (1 - s)
 
 
 def backward(self, X, y, o):
 self.o_error = y - o
 self.o_delta = self.o_error * self.sigmoidPrime(o)
 self.z2_error = np.matmul(self.o_delta,
     np.matrix.transpose(self.W2))
 self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2)
 self.W1 += np.matmul(np.matrix.transpose(X), self.z2_delta)
 self.W2 += np.matmul(np.matrix.transpose(self.z2),
    self.o_delta)
 
 
 def train(self, X, y, epochs):
 for epoch in range(epochs):
  o = self.forward(X)
  self.backward(X, y, o)
  self.error_list.append(np.abs(self.o_error).mean())
 
 
 def predict(self, x_predicted):
 return self.forward(x_predicted).item()
 
 
 def view_error_development(self):
 plt.plot(range(len(self.error_list)), self.error_list)
 plt.title('Mean Sum Squared Loss')
 plt.xlabel('Epoch')
 plt.ylabel('Loss')
 
 
 def test_evaluation(self, input_test, output_test):
 for i, test_element in enumerate(input_test):
  if self.predict(test_element) > self.limit and \
   output_test[i] == 1:
  self.true_positives += 1
  if self.predict(test_element) < self.limit and \
   output_test[i] == 1:
  self.false_negatives += 1
  if self.predict(test_element) > self.limit and \
   output_test[i] == 0:
  self.false_positives += 1
  if self.predict(test_element) < self.limit and \
   output_test[i] == 0:
  self.true_negatives += 1
 print('True positives: ', self.true_positives,
  '\nTrue negatives: ', self.true_negatives,
  '\nFalse positives: ', self.false_positives,
  '\nFalse negatives: ', self.false_negatives,
  '\nAccuracy: ',
  (self.true_positives + self.true_negatives) /
  (self.true_positives + self.true_negatives +
  self.false_positives + self.false_negatives))

步驟4.1: 創建一個 Initialize 函數

當我們在 Python 中創建一個類以便正確地初始化變量時,會調用 __init__ 函數。

利用Python怎么創建一個神經網絡

def __init__(self, ):
 self.inputSize = 3
 self.outputSize = 1
 self.hiddenSize = 3
 
 
 self.W1 = torch.randn(self.inputSize, self.hiddenSize)
 self.W2 = torch.randn(self.hiddenSize, self.outputSize)
 
 
 self.error_list = []
 self.limit = 0.5
 self.true_positives = 0
 self.false_positives = 0
 self.true_negatives = 0
 self.false_negatives = 0

利用Python怎么創建一個神經網絡

在這個例子中,我選擇了一個有三個輸入節點、三個隱藏層節點和一個輸出節點的神經網絡。以上的 __init__ 函數初始化描述神經網絡大小的變量。inputSize 是輸入節點的數目,它應該等于輸入數據中特征的數目。outputSize 等于輸出節點數,hiddenSize 描述隱藏層中的節點數。此外,我們的網絡中不同節點之間的權重將在訓練過程中進行調整。

除了描述神經網絡的大小和權重的變量之外,我還創建了幾個在創建神經網絡對象時初始化的變量,這些對象將用于評估目的。誤差列表將包含每個時期的平均絕對誤差(MAE) ,這個極限將描述一個向量應該被分類為一個向量,元素10作為第一個元素而不是。然后,還有一些變量可以用來存儲真實陽性、假陽性、真實陰性和假陰性的數量。

步驟4.2: 創建一個前向傳播函數

前向傳播函數的作用是通過神經網絡的不同層次進行迭代,以預測特定 epoch 的輸出。然后,根據預測輸出和實際輸出之間的差異,在反向傳播的過程中更新權重。

def forward(self, X):
 self.z = np.matmul(X, self.W1)
 self.z2 = self.sigmoid(self.z)
 self.z3 = np.matmul(self.z2, self.W2)
 o = self.sigmoid(self.z3)
 return o

為了計算每一層中每個節點的值,前一層中節點的值將被乘以適當的權重,然后應用非線性激活函數來擴大最終輸出函數的可能性。在這個例子中,我們選擇了 Sigmoid 作為激活函數,但也有許多其他的選擇。

步驟4.3: 創建一個反向傳播函數

反向傳播是對神經網絡中不同節點的權值進行更新,從而決定其重要性的過程。

def backward(self, X, y, o):
 self.o_error = y - o
 self.o_delta = self.o_error * self.sigmoidPrime(o)
 self.z2_error = np.matmul(self.o_delta,
     np.matrix.transpose(self.W2))
 self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2)
 self.W1 += np.matmul(np.matrix.transpose(X), self.z2_delta)
 self.W2 += np.matmul(np.matrix.transpose(self.z2),
    self.o_delta)

在上面的代碼片段中,輸出層的輸出錯誤被計算為預測輸出與實際輸出之間的差值。然后,在重復整個過程直到到達輸入層之前,將這個錯誤與 Sigmoid 相乘以運行梯度下降法。最后,更新不同層之間的權重。

步驟4.4: 創建一個訓練函數

在訓練過程中,該算法將運行向前和向后傳遞,從而更新每個 epoch 的權重。為了得到最精確的權重值,這是必要的。

def train(self, X, y, epochs):
 for epoch in range(epochs):
  o = self.forward(X)
  self.backward(X, y, o)
  self.error_list.append(np.abs(self.o_error).mean())

除了向前和向后傳播之外,我們還將平均絕對誤差(MAE)保存到一個錯誤列表中,以便日后觀察平均絕對誤差在訓練過程中是如何演變的。

步驟4.5: 創建一個預測函數

在訓練過程中對權重進行了微調之后,該算法就可以預測新數據點的輸出。預測的輸出數字有望與實際輸出數字非常接近。

def predict(self, x_predicted):
 return self.forward(x_predicted).item()

步驟4.6: 繪制平均絕對誤差發展圖

評價機器學習算法質量的方法有很多。經常使用的測量方法之一是平均絕對誤差,這個誤差應該隨著時間的推移而減小。

def view_error_development(self):
 plt.plot(range(len(self.error_list)), self.error_list)
 plt.title('Mean Sum Squared Loss')
 plt.xlabel('Epoch')
 plt.ylabel('Loss')

利用Python怎么創建一個神經網絡

步驟4.7: 計算精度及其組成部分

真正、假正、真負和假負的數量描述了機器學習分類算法的質量。訓練后的神經網絡權值更新,使算法能夠準確地預測新的數據點。在二進制分類任務中,這些新數據點只能是1或0。根據預測值是否高于或低于定義的限制,算法將新條目分為1或0。

def test_evaluation(self, input_test, output_test):
 for i, test_element in enumerate(input_test):
  if self.predict(test_element) > self.limit and \
   output_test[i] == 1:
  self.true_positives += 1
  if self.predict(test_element) < self.limit and \
   output_test[i] == 1:
  self.false_negatives += 1
  if self.predict(test_element) > self.limit and \
   output_test[i] == 0:
  self.false_positives += 1
  if self.predict(test_element) < self.limit and \
   output_test[i] == 0:
  self.true_negatives += 1
 print('True positives: ', self.true_positives,
  '\nTrue negatives: ', self.true_negatives,
  '\nFalse positives: ', self.false_positives,
  '\nFalse negatives: ', self.false_negatives,
  '\nAccuracy: ',
  (self.true_positives + self.true_negatives) /
  (self.true_positives + self.true_negatives +
  self.false_positives + self.false_negatives))

當運行 test _ evaluation 函數時,我們得到以下結果:

真正: 2

真負: 4

假正: 0

假負: 0

準確性由以下公式給出:

利用Python怎么創建一個神經網絡

由此我們可以推斷,在我們的案例中,精確度是1。

第五步: 運行一個腳本來訓練和評估神經網絡模型

NN = NeuralNetwork()
NN.train(input_train_scaled, output_train_scaled, 200)
NN.predict(input_pred)
NN.view_error_development()
NN.test_evaluation(input_test_scaled, output_test_scaled)

為了嘗試我們剛剛構建的神經網絡類,我們將首先初始化一個神經網絡類型的對象。然后對訓練數據進行神經網絡訓練,在新訓練的模型在測試向量上進行測試之前,對算法的權值進行200個 epoch 以上的“修正”。然后,在利用測試數據集對模型進行評估之前,繪制誤差圖。

第六步: 改進腳本并使用它

提供的代碼可以很容易地修改,以處理其他類似的情況。我們鼓勵讀者嘗試改變變量并使用自己的數據等等。改進或變更的潛在想法包括但不限于:

  1. 泛化代碼以適用于任何輸入和輸出大小的數據

  2. 使用平均絕對誤差以外的另一個度量來衡量誤差

  3. 使用其他的縮放函數

上述就是小編為大家分享的利用Python怎么創建一個神經網絡了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

巴塘县| 道孚县| 新邵县| 叶城县| 托克逊县| 多伦县| 黑河市| 锡林浩特市| 图木舒克市| 子长县| 日照市| 环江| 通榆县| 新疆| 武乡县| 宣城市| 巫溪县| 洪雅县| 临夏县| 龙胜| 台南市| 堆龙德庆县| 抚顺市| 海伦市| 广平县| 阜城县| 清原| 安康市| 大悟县| 漳州市| 栾川县| 凤台县| 治多县| 大安市| 财经| 株洲市| 德惠市| 佛山市| 兴安盟| 婺源县| 永德县|