您好,登錄后才能下訂單哦!
如何在python中使用opencv對直線進行檢測?針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。
源碼
import cv2 import numpy as np def line_detect(image): # 將圖片轉換為HSV hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) # 設置閾值 lowera = np.array([0, 0, 221]) uppera = np.array([180, 30, 255]) mask1 = cv2.inRange(hsv, lowera, uppera) kernel = np.ones((3, 3), np.uint8) # 對得到的圖像進行形態學操作(閉運算和開運算) mask = cv2.morphologyEx(mask1, cv2.MORPH_CLOSE, kernel) #閉運算:表示先進行膨脹操作,再進行腐蝕操作 mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) #開運算:表示的是先進行腐蝕,再進行膨脹操作 # 繪制輪廓 edges = cv2.Canny(mask, 50, 150, apertureSize=3) # 顯示圖片 cv2.imshow("edges", edges) # 檢測白線 這里是設置檢測直線的條件,可以去讀一讀HoughLinesP()函數,然后根據自己的要求設置檢測條件 lines = cv2.HoughLinesP(edges, 1, np.pi / 180, 40,minLineLength=10,maxLineGap=10) print "lines=",lines print "========================================================" i=1 # 對通過霍夫變換得到的數據進行遍歷 for line in lines: # newlines1 = lines[:, 0, :] print "line["+str(i-1)+"]=",line x1,y1,x2,y2 = line[0] #兩點確定一條直線,這里就是通過遍歷得到的兩個點的數據 (x1,y1)(x2,y2) cv2.line(image,(x1,y1),(x2,y2),(0,0,255),2) #在原圖上畫線 # 轉換為浮點數,計算斜率 x1 = float(x1) x2 = float(x2) y1 = float(y1) y2 = float(y2) print "x1=%s,x2=%s,y1=%s,y2=%s" % (x1, x2, y1, y2) if x2 - x1 == 0: print "直線是豎直的" result=90 elif y2 - y1 == 0 : print "直線是水平的" result=0 else: # 計算斜率 k = -(y2 - y1) / (x2 - x1) # 求反正切,再將得到的弧度轉換為度 result = np.arctan(k) * 57.29577 print "直線傾斜角度為:" + str(result) + "度" i = i+1 # 顯示最后的成果圖 cv2.imshow("line_detect",image) return result if __name__ == '__main__': # 讀入圖片 src = cv2.imread("lines/line6.jpg") # 設置窗口大小 cv2.namedWindow("input image", cv2.WINDOW_AUTOSIZE) # 顯示原始圖片 cv2.imshow("input image", src) # 調用函數 line_detect(src) cv2.waitKey(0)
測試圖片:
效果圖:
關于如何在python中使用opencv對直線進行檢測問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注億速云行業資訊頻道了解更多相關知識。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。