91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

opencv3/C++中怎么實現平面對象識別和透視變換

發布時間:2022-04-16 10:48:43 來源:億速云 閱讀:246 作者:iii 欄目:編程語言

本篇內容主要講解“opencv3/C++中怎么實現平面對象識別和透視變換”,感興趣的朋友不妨來看看。本文介紹的方法操作簡單快捷,實用性強。下面就讓小編來帶大家學習“opencv3/C++中怎么實現平面對象識別和透視變換”吧!

findHomography( )

函數findHomography( )找到兩個平面之間的透視變換H。

參數說明:

Mat findHomography( 
InputArray srcPoints, //原始平面中點的坐標
InputArray dstPoints, //目標平面中點的坐標
int method = 0, //用于計算單應性矩陣的方法
double ransacReprojThreshold = 3, 
OutputArray mask=noArray(), //通過魯棒法(RANSAC或LMEDS)設置的可選輸出掩碼
const int maxIters = 2000, //RANSAC迭代的最大次數,2000是它可以達到的最大值
const double confidence = 0.995 //置信度
);

用于計算單應性矩陣的方法有:

0 :使用所有點的常規方法;

RANSAC:基于RANSAC的魯棒法;

LMEDS :最小中值魯棒法;

RHO :基于PROSAC的魯棒法;

opencv3/C++中怎么實現平面對象識別和透視變換

被最小化。如果參數方法被設置為默認值0,則函數使用所有的點對以簡單的最小二乘方案計算初始單應性估計。

然而,如果不是所有的點對 opencv3/C++中怎么實現平面對象識別和透視變換 都符合剛性透視變換(也就是說有一些異常值),那么這個初始估計就會很差。在這種情況下,可以使用三種魯棒法之一。方法RANSAC,LMeDS和RHO嘗試使用這個子集和一個簡單的最小二乘算法來估計單應矩陣的各個隨機子集(每個子集有四對),然后計算計算的單應性的質量/良好度(這是RANSAC的內點數或LMeD的中值重投影誤差)。然后使用最佳子集來產生單應矩陣的初始估計和內點/外點的掩碼。

不管方法是否魯棒,計算的單應性矩陣都用Levenberg-Marquardt方法進一步細化(僅在魯棒法的情況下使用inlier)以更多地減少再投影誤差。

RANSAC和RHO方法幾乎可以處理任何異常值的比率,但需要一個閾值來區分異常值和異常值。 LMeDS方法不需要任何閾值,但只有在超過50%的內部值時才能正常工作。最后,如果沒有異常值且噪聲相當小,則使用默認方法(method = 0)。

perspectiveTransform()

函數perspectiveTransform()執行矢量的透視矩陣變換。

參數說明:

void perspectiveTransform(
InputArray src, //輸入雙通道或三通道浮點數組/圖像
OutputArray dst, //輸出與src相同大小和類型的數組/圖像
InputArray m //3x3或4x4浮點轉換矩陣
);

平面對象識別:

#include<opencv2/opencv.hpp>
#include<opencv2/xfeatures2d.hpp>
using namespace cv;
using namespace cv::xfeatures2d;

int main()
{
 Mat src1,src2;
 src1 = imread("E:/image/image/card.jpg");
 src2 = imread("E:/image/image/cards.jpg");
 if (src1.empty() || src2.empty())
 {
  printf("can ont load images....\n");
  return -1;
 }
 imshow("image1", src1);
 imshow("image2", src2);

 int minHessian = 400;
 //選擇SURF特征
 Ptr<SURF>detector = SURF::create(minHessian);
 std::vector<KeyPoint>keypoints1;
 std::vector<KeyPoint>keypoints2;
 Mat descriptor1, descriptor2;
 //檢測關鍵點并計算描述符
 detector->detectAndCompute(src1, Mat(), keypoints1, descriptor1);
 detector->detectAndCompute(src2, Mat(), keypoints2, descriptor2);

 //基于Flann的描述符匹配器
 FlannBasedMatcher matcher;
 std::vector<DMatch>matches;
 //從查詢集中查找每個描述符的最佳匹配
 matcher.match(descriptor1, descriptor2, matches);
 double minDist = 1000;
 double maxDist = 0;
 for (int i = 0; i < descriptor1.rows; i++)
 {
  double dist = matches[i].distance;
  printf("%f \n", dist);
  if (dist > maxDist)
  {
   maxDist = dist;
  }
  if (dist < minDist)
  {
   minDist = dist;
  }

 }
 //DMatch類用于匹配關鍵點描述符的
 std::vector<DMatch>goodMatches;
 for (int i = 0; i < descriptor1.rows; i++)
 {
  double dist = matches[i].distance;
  if (dist < max(2*minDist, 0.02))
  {
   goodMatches.push_back(matches[i]);
  }
 }
 Mat matchesImg;
 drawMatches(src1, keypoints1, src2, keypoints2, goodMatches, matchesImg, Scalar::all(-1), 
  Scalar::all(-1), std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

 std::vector<Point2f>point1, point2;
 for (int i = 0; i < goodMatches.size(); i++)
 {
  point1.push_back(keypoints1[goodMatches[i].queryIdx].pt);
  point2.push_back(keypoints2[goodMatches[i].trainIdx].pt);
 }

 Mat H = findHomography(point1, point2, RANSAC);
 std::vector<Point2f>cornerPoints1(4);
 std::vector<Point2f>cornerPoints2(4);
 cornerPoints1[0] = Point(0, 0);
 cornerPoints1[1] = Point(src1.cols, 0);
 cornerPoints1[2] = Point(src1.cols, src1.rows);
 cornerPoints1[3] = Point(0,src1.rows);
 perspectiveTransform(cornerPoints1, cornerPoints2, H);

 //繪制出變換后的目標輪廓,由于左側為圖像src2故坐標點整體右移src1.cols
 line(matchesImg, cornerPoints2[0] + Point2f(src1.cols, 0), cornerPoints2[1] + Point2f(src1.cols, 0), Scalar(0,255,255), 4, 8, 0);
 line(matchesImg, cornerPoints2[1] + Point2f(src1.cols, 0), cornerPoints2[2] + Point2f(src1.cols, 0), Scalar(0,255,255), 4, 8, 0);
 line(matchesImg, cornerPoints2[2] + Point2f(src1.cols, 0), cornerPoints2[3] + Point2f(src1.cols, 0), Scalar(0,255,255), 4, 8, 0);
 line(matchesImg, cornerPoints2[3] + Point2f(src1.cols, 0), cornerPoints2[0] + Point2f(src1.cols, 0), Scalar(0,255,255), 4, 8, 0);

 //在原圖上繪制出變換后的目標輪廓
 line(src2, cornerPoints2[0], cornerPoints2[1], Scalar(0,255,255), 4, 8, 0);
 line(src2, cornerPoints2[1], cornerPoints2[2], Scalar(0,255,255), 4, 8, 0);
 line(src2, cornerPoints2[2], cornerPoints2[3], Scalar(0,255,255), 4, 8, 0);
 line(src2, cornerPoints2[3], cornerPoints2[0], Scalar(0,255,255), 4, 8, 0);

 imshow("output", matchesImg);
 imshow("output2", src2);

 waitKey();
 return 0;
}

opencv3/C++中怎么實現平面對象識別和透視變換

opencv3/C++中怎么實現平面對象識別和透視變換

opencv3/C++中怎么實現平面對象識別和透視變換

到此,相信大家對“opencv3/C++中怎么實現平面對象識別和透視變換”有了更深的了解,不妨來實際操作一番吧!這里是億速云網站,更多相關內容可以進入相關頻道進行查詢,關注我們,繼續學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

武强县| 蓬安县| 根河市| 沂南县| 定州市| 岳池县| 吉水县| 濮阳县| 平湖市| 阿巴嘎旗| 图们市| 萨迦县| 盐池县| 宾川县| 磐安县| 贵州省| 正蓝旗| 郓城县| 潜山县| 利川市| 历史| 进贤县| 沙洋县| 巴塘县| 巍山| 望都县| 高雄市| 佛教| 满城县| 新建县| 会宁县| 鸡西市| 莒南县| 萝北县| 子洲县| 东乡| 元江| 沁水县| 阳信县| 天津市| 宿州市|