您好,登錄后才能下訂單哦!
這篇文章主要介紹了class類在python中如何獲取金融數據,具有一定借鑒價值,需要的朋友可以參考下。希望大家閱讀完這篇文章后大有收獲。下面讓小編帶著大家一起了解一下。
使用tushare獲取所有A股每日交易數據,保存到本地數據庫,同時每日更新數據庫;根據行情數據進行可視化和簡單的策略分析與回測。由于篇幅有限,本文著重介紹股票數據管理(下載、數據更新)的面向對象編程應用實例。
#導入需要用到的模塊 import numpy as np import pandas as pd from dateutil.parser import parse from datetime import datetime,timedelta #操作數據庫的第三方包,使用前先安裝pip install sqlalchemy from sqlalchemy import create_engine #tushare包設置 import tushare as ts token='輸入你在tushare上獲得的token' pro=ts.pro_api(token) #使用python3自帶的sqlite數據庫 #本人創建的數據庫地址為c:\zjy\db_stock\ file='sqlite:///c:\\zjy\\db_stock\\' #數據庫名稱 db_name='stock_data.db' engine = create_engine(file+db_name) class Data(object): def __init__(self, start='20050101', end='20191115', table_name='daily_data'): self.start=start self.end=end self.table_name=table_name self.codes=self.get_code() self.cals=self.get_cals() #獲取股票代碼列表 def get_code(self): codes = pro.stock_basic(list_status='L').ts_code.values return codes #獲取股票交易日歷 def get_cals(self): #獲取交易日歷 cals=pro.trade_cal(exchange='') cals=cals[cals.is_open==1].cal_date.values return cals #每日行情數據 def daily_data(self,code): try: df0=pro.daily(ts_code=code,start_date=self.start, end_date=self.end) df1=pro.adj_factor(ts_code=code,trade_date='') #復權因子 df=pd.merge(df0,df1) #合并數據 except Exception as e: print(code) print(e) return df #保存數據到數據庫 def save_sql(self): for code in self.codes: data=self.daily_data(code) data.to_sql(self.table_name,engine, index=False,if_exists='append') #獲取最新交易日期 def get_trade_date(self): #獲取當天日期時間 pass #更新數據庫數據 def update_sql(self): pass #代碼省略 #查詢數據庫信息 def info_sql(self):
代碼運行
#假設你將上述代碼封裝成class Data #保存在'C:\zjy\db_stock'目錄下的down_data.py中 import sys #添加到當前工作路徑 sys.path.append(r'C:\zjy\db_stock') #導入py文件中的Data類 from download_data import Data #實例類 data=Data() #data.save_sql() #只需運行一次即可 data.update_sql() data.info_sql()
實例擴展:
Python下,pandas_datareader模塊可以用于獲取研究數據。例子如下:
>>> from pandas_datareader.data import DataReader >>> >>> datas = DataReader(name='AAPL', data_source='yahoo', start='2018-01-01') >>> >>> type(datas) <class 'pandas.core.frame.DataFrame'> >>> datas Open High Low Close Adj Close \ Date 2018-01-02 170.160004 172.300003 169.259995 172.259995 172.259995 2018-01-03 172.529999 174.550003 171.960007 172.229996 172.229996 2018-01-04 172.539993 173.470001 172.080002 173.029999 173.029999 2018-01-05 173.440002 175.369995 173.050003 175.000000 175.000000 2018-01-08 174.350006 175.610001 173.929993 174.350006 174.350006 2018-01-09 174.550003 175.059998 173.410004 174.330002 174.330002 2018-01-10 173.160004 174.300003 173.000000 174.289993 174.289993 2018-01-11 174.589996 175.490005 174.490005 175.279999 175.279999 2018-01-12 176.179993 177.360001 175.649994 177.089996 177.089996 Volume Date 2018-01-02 25555900 2018-01-03 29517900 2018-01-04 22434600 2018-01-05 23660000 2018-01-08 20567800 2018-01-09 21584000 2018-01-10 23959900 2018-01-11 18667700 2018-01-12 25226000 >>> >>> print(datas.to_csv()) Date,Open,High,Low,Close,Adj Close,Volume 2018-01-02,170.160004,172.300003,169.259995,172.259995,172.259995,25555900 2018-01-03,172.529999,174.550003,171.960007,172.229996,172.229996,29517900 2018-01-04,172.539993,173.470001,172.080002,173.029999,173.029999,22434600 2018-01-05,173.440002,175.369995,173.050003,175.0,175.0,23660000 2018-01-08,174.350006,175.610001,173.929993,174.350006,174.350006,20567800 2018-01-09,174.550003,175.059998,173.410004,174.330002,174.330002,21584000 2018-01-10,173.160004,174.300003,173.0,174.289993,174.289993,23959900 2018-01-11,174.589996,175.490005,174.490005,175.279999,175.279999,18667700 2018-01-12,176.179993,177.360001,175.649994,177.089996,177.089996,25226000 >>>
感謝你能夠認真閱讀完這篇文章,希望小編分享class類在python中如何獲取金融數據內容對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,遇到問題就找億速云,詳細的解決方法等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。