91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python圖像處理二值化方法有哪些實例

發布時間:2020-07-30 11:41:50 來源:億速云 閱讀:276 作者:Leah 欄目:編程語言

本篇文章給大家分享的是有關Python圖像處理二值化方法有哪些實例,小編覺得挺實用的,因此分享給大家學習,希望大家閱讀完這篇文章后可以有所收獲,話不多說,跟著小編一起來看看吧。

在用python進行圖像處理時,二值化是非常重要的一步,現總結了自己遇到過的6種 圖像二值化的方法(當然這個絕對不是全部的二值化方法,若發現新的方法會繼續新增)。


1. opencv 簡單閾值 cv2.threshold

2. opencv 自適應閾值 cv2.adaptiveThreshold (自適應閾值中計算閾值的方法有兩種:mean_c 和 guassian_c ,可以嘗試用下哪種效果好)

3. Otsu's 二值化

例子:

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('scratch.png', 0)
# global thresholding
ret1, th2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
# Otsu's thresholding
th3 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
# Otsu's thresholding
# 閾值一定要設為 0 !
ret3, th4 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# plot all the images and their histograms
images = [img, 0, th2, img, 0, th3, img, 0, th4]
titles = [
  'Original Noisy Image', 'Histogram', 'Global Thresholding (v=127)',
  'Original Noisy Image', 'Histogram', "Adaptive Thresholding",
  'Original Noisy Image', 'Histogram', "Otsu's Thresholding"
]
# 這里使用了 pyplot 中畫直方圖的方法, plt.hist, 要注意的是它的參數是一維數組
# 所以這里使用了( numpy ) ravel 方法,將多維數組轉換成一維,也可以使用 flatten 方法
# ndarray.flat 1-D iterator over an array.
# ndarray.flatten 1-D array copy of the elements of an array in row-major order.
for i in range(3):
  plt.subplot(3, 3, i * 3 + 1), plt.imshow(images[i * 3], 'gray')
  plt.title(titles[i * 3]), plt.xticks([]), plt.yticks([])
  plt.subplot(3, 3, i * 3 + 2), plt.hist(images[i * 3].ravel(), 256)
  plt.title(titles[i * 3 + 1]), plt.xticks([]), plt.yticks([])
  plt.subplot(3, 3, i * 3 + 3), plt.imshow(images[i * 3 + 2], 'gray')
  plt.title(titles[i * 3 + 2]), plt.xticks([]), plt.yticks([])
plt.show()

結果圖:

Python圖像處理二值化方法有哪些實例

4. skimage niblack閾值

5. skimage sauvola閾值 (主要用于文本檢測)

例子:

https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_niblack_sauvola.html

import matplotlib
import matplotlib.pyplot as plt

from skimage.data import page
from skimage.filters import (threshold_otsu, threshold_niblack,
               threshold_sauvola)


matplotlib.rcParams['font.size'] = 9


image = page()
binary_global = image > threshold_otsu(image)

window_size = 25
thresh_niblack = threshold_niblack(image, window_size=window_size, k=0.8)
thresh_sauvola = threshold_sauvola(image, window_size=window_size)

binary_niblack = image > thresh_niblack
binary_sauvola = image > thresh_sauvola

plt.figure(figsize=(8, 7))
plt.subplot(2, 2, 1)
plt.imshow(image, cmap=plt.cm.gray)
plt.title('Original')
plt.axis('off')

plt.subplot(2, 2, 2)
plt.title('Global Threshold')
plt.imshow(binary_global, cmap=plt.cm.gray)
plt.axis('off')

plt.subplot(2, 2, 3)
plt.imshow(binary_niblack, cmap=plt.cm.gray)
plt.title('Niblack Threshold')
plt.axis('off')

plt.subplot(2, 2, 4)
plt.imshow(binary_sauvola, cmap=plt.cm.gray)
plt.title('Sauvola Threshold')
plt.axis('off')

plt.show()

結果圖:

Python圖像處理二值化方法有哪些實例

6.IntegralThreshold(主要用于文本檢測)

使用方法: 運行下面網址的util.py文件

https://github.com/Liang-yc/IntegralThreshold

結果圖:

Python圖像處理二值化方法有哪些實例

以上就是Python圖像處理二值化方法有哪些實例,小編相信有部分知識點可能是我們日常工作會見到或用到的。希望你能通過這篇文章學到更多知識。更多詳情敬請關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

平江县| 福鼎市| 安阳市| 廊坊市| 夏邑县| 临颍县| 柘荣县| 芜湖市| 麻阳| 罗山县| 浙江省| 安龙县| 石狮市| 湟源县| 田林县| 农安县| 长寿区| 大兴区| 桂平市| 陇川县| 永德县| 招远市| 梅河口市| 平塘县| 夏邑县| 绍兴县| 探索| 五原县| 崇左市| 吕梁市| 兴安县| 衡山县| 隆德县| 丰城市| 黄龙县| 重庆市| 台安县| 通化县| 攀枝花市| 海口市| 嘉定区|