您好,登錄后才能下訂單哦!
首先我們先看源碼:
// 將“key-value”添加到HashMap中 public V put(K key, V value) { // 若“key為null”,則將該鍵值對添加到table[0]中。 if (key == null) return putForNullKey(value); // 若“key不為null”,則計算該key的哈希值,然后將其添加到該哈希值對應的鏈表中。 int hash = hash(key.hashCode()); // 計算key hash值在table數組中的位置 ------------ (1) int i = indexFor(hash, table.length); // 迭代e,從i處開始,找到key保存的位置 ------------ (2) for (Entry<K,V> e = table[i]; e != null; e = e.next) { Object k; // 若“該key”對應的鍵值對已經存在,則用新的value取代舊的value。然后退出! if (e.hash == hash && ((k = e.key) == key || key.equals(k))) { V oldValue = e.value; e.value = value; e.recordAccess(this); return oldValue; } } // 若“該key”對應的鍵值對不存在,則將“key-value”添加到table中 modCount++; //將key-value添加到table[i]處 addEntry(hash, key, value, i); return null; } |
通過源碼我們可以清晰看到HashMap保存數據的過程為:首先判斷key是否為null,若為null,則直接調用putForNullKey方法。若不為空則先計算key的hash值,然后根據hash值搜索在table數組中的索引位置,如果table數組在該位置處有元素,則通過比較是否存在相同的key,若存在則覆蓋原來key的value,否則將該元素保存在鏈頭(最先保存的元素放在鏈尾)。若table在該處沒有元素,則直接保存。
1、 先看迭代處。此處迭代原因就是為了防止存在相同的key值,若發現兩個hash值(key)相同時,HashMap的處理方式是用新value替換舊value,這里并沒有處理key,這就解釋了HashMap中沒有兩個相同的key。
2、 再看(1)、(2)處。這里是HashMap的精華所在。首先是hash方法,該方法為一個純粹的數學計算,就是計算h的hash值。
static int hash(int h) { return useNewHash ? newHash(h) : oldHash(h); } |
useNewHash聲明如下:
private static final boolean useNewHash; static { useNewHash = false; } |
private static int oldHash(int h) { h += ~(h << 9); h ^= (h >>> 14); h += (h << 4); h ^= (h >>> 10); return h; } private static int newHash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } |
我們知道對于HashMap的table而言,數據分布需要均勻(最好每項都只有一個元素,這樣就可以直接找到),不能太緊也不能太松,太緊會導致查詢速度慢,太松則浪費空間。計算hash值后,怎么才能保證table元素分布均與呢?我們會想到取模,但是由于取模的消耗較大,HashMap是這樣處理的:調用indexFor方法。
static int indexFor(int h, int length) { return h & (length-1); } |
HashMap的底層數組長度總是2的n次方,在構造函數中存在:capacity <<= 1;這樣做總是能夠保證HashMap的底層數組長度為2的n次方。當length為2的n次方時,h&(length - 1)就相當于對length取模,而且速度比直接取模快得多,這是HashMap在速度上的一個優化。至于為什么是2的n次方下面解釋。
我們回到indexFor方法,該方法僅有一條語句:h&(length - 1) 作用:均勻分布table數據和充分利用空間。
這里我們假設length為16(2^n)和15,h為5、6、7。
length = 16 | |||
h | length - 1 | h & length -1 | |
5 | 15 | 0101 & 1111 = 00101 | 5 |
6 | 15 | 0110 & 1111 = 00110 | 6 |
7 | 15 | 0111 & 1111 = 00111 | 7 |
length = 15 | |||
5 | 14 | 0101 & 1110 = 00101 | 5 |
6 | 14 | 0110 & 1110 = 00110 | 6 |
7 | 14 | 0111 & 1110 = 00110 | 6 |
當n=15時,6和7的結果一樣,這樣表示他們在table存儲的位置是相同的,也就是產生了碰撞,6、7就會在一個位置形成鏈表,這樣就會導致查詢速度降低。誠然這里只分析三個數字不是很多,那么我們就看0-15。
h | length - 1 | h & length - 1 | |
0 | 14 | 0000 & 1110 = 0000 | 0 |
1 | 14 | 0001 & 1110 = 0000 | 0 |
2 | 14 | 0010 & 1110 = 0010 | 2 |
3 | 14 | 0011 & 1110 = 0010 | 2 |
4 | 14 | 0100 & 1110 = 0100 | 4 |
5 | 14 | 0101 & 1110 = 0100 | 4 |
6 | 14 | 0110 & 1110 = 0110 | 6 |
7 | 14 | 0111 & 1110 = 0110 | 6 |
8 | 14 | 1000 & 1110 = 1000 | 8 |
9 | 14 | 1001 & 1110 = 1000 | 8 |
10 | 14 | 1010 & 1110 = 1010 | 10 |
11 | 14 | 1011 & 1110 = 1010 | 10 |
12 | 14 | 1100 & 1110 = 1100 | 12 |
13 | 14 | 1101 & 1110 = 1100 | 12 |
14 | 14 | 1110 & 1110 = 1110 | 14 |
15 | 14 | 1111 & 1110 = 1110 | 14 |
從上面的圖表中我們看到總共發生了8此碰撞,同時發現浪費的空間非常大,有1、3、5、7、9、11、13、15處沒有記錄,也就是沒有存放數據。這是因為他們在與14進行&運算時,得到的結果最后一位永遠都是0,即0001、0011、0101、0111、1001、1011、1101、1111位置處是不可能存儲數據的,空間減少,進一步增加碰撞幾率,這樣就會導致查詢速度慢。而當length = 16時,length – 1 = 15 即1111,那么進行低位&運算時,值總是與原來hash值相同,而進行高位運算時,其值等于其低位值。所以說當length = 2^n時,不同的hash值發生碰撞的概率比較小,這樣就會使得數據在table數組中分布較均勻,查詢速度也較快。
這里我們再來復習put的流程:當我們想一個HashMap中添加一對key-value時,系統首先會計算key的hash值,然后根據hash值確認在table中存儲的位置。若該位置沒有元素,則直接插入。否則迭代該處元素鏈表并依此比較其key的hash值。如果兩個hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),則用新的Entry的value覆蓋原來節點的value。如果兩個hash值相等但key值不等 ,則將該節點插入該鏈表的鏈頭。具體的實現過程見addEntry方法,如下:
void addEntry(int hash, K key, V value, int bucketIndex) { // 獲取bucketIndex處的Entry Entry<K,V> e = table[bucketIndex]; // 將新創建的 Entry 放入 bucketIndex 索引處,并讓新的 Entry 指向原來的 Entry table[bucketIndex] = new Entry<K,V>(hash, key, value, e); // 若HashMap中元素的個數超過極限了,則容量擴大兩倍 if (size++ >= threshold) resize(2 * table.length); } |
這個方法中有兩點需要注意:
一、鏈的產生。
系統總是將新的Entry對象添加到bucketIndex處。如果bucketIndex處已經有了對象,那么新添加的Entry對象將指向原有的Entry對象,形成一條Entry鏈,但是若bucketIndex處沒有Entry對象,也就是e==null,那么新添加的Entry對象指向null,也就不會產生Entry鏈了。
二、擴容問題。
隨著HashMap中元素的數量越來越多,發生碰撞的概率就越來越大,所產生的鏈表長度就會越來越長,這樣勢必會影響HashMap的速度,為了保證HashMap的效率,系統必須要在某個臨界點進行擴容處理。該臨界點在當HashMap中元素的數量等于table數組長度*加載因子。但是擴容是一個非常耗時的過程,因為它需要重新計算這些數據在新table數組中的位置并進行復制處理。所以如果我們已經預知HashMap中元素的個數,那么預設元素的個數能夠有效的提高HashMap的性能。
相對于HashMap的存而言,取就顯得比較簡單了。通過key的hash值找到在table數組中的索引處的Entry,然后返回該key對應的value即可。
// 獲取key對應的value public V get(Object key) { // 若為null,調用getForNullKey方法返回相對應的value if (key == null) // 根據該 key 的 hashCode 值計算它的 hash 碼 return getForNullKey(); // 獲取key的hash值 int hash = hash(key.hashCode()); // 取出 table 數組中指定索引處的值,在“該hash值對應的鏈表”上查找“鍵值等于key”的元素 for (Entry<K,V> e = table[indexFor(hash, table.length)]; e != null; e = e.next) { Object k; //判斷key是否相同,若key與查找的key相同,則返回相對應的value if (e.hash == hash && ((k = e.key) == key || key.equals(k))) return e.value; } //沒找到則返回null return null; } |
在這里能夠根據key快速的取到value除了和HashMap的數據結構密不可分外,還和Entry有莫大的關系,在前面就提到過,HashMap在存儲過程中并沒有將key,value分開來存儲,而是當做一個整體key-value來處理的,這個整體就是Entry對象。同時value也只相當于key的附屬而已。在存儲的過程中,系統根據key的hashcode來決定Entry在table數組中的存儲位置,在取的過程中同樣根據key的hashcode取出相對應的Entry對象。上海尚學堂java培訓原創,陸續java技術相關文章奉上,請多關注。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。