您好,登錄后才能下訂單哦!
如何分析spark-mlib的線性回歸,針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。
import org.apache.spark.SparkConf import org.apache.spark.SparkContext import org.apache.spark.ml.feature.VectorAssembler import org.apache.spark.sql.SQLContext import org.apache.spark.ml.regression.LinearRegression object SparkMlib { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("mlib").setMaster("local") val context = new SparkContext(conf) val sqlContext = new SQLContext(context) val rdd = context.makeRDD(List((1,3,9),(2,6,18),(3,9,27),(4,12,36))) val cols = Array("x1","x2") val vectors = new VectorAssembler().setInputCols(cols).setOutputCol("predict") import sqlContext.implicits._ val x = vectors.transform(rdd.toDF("x1","x2","y")) val model = new LinearRegression() //自變量的數據名 .setFeaturesCol("predict") //因變量 .setLabelCol("y") //是否有截距 .setFitIntercept(false) //訓練模型 .fit(x) //線性回歸的系數 println(model.coefficients) //線性回歸的截距 println(model.intercept) //線性回歸的自變量的個數 println(model.numFeatures) //上面的feature列 println(model.summary.featuresCol) //r2 println(model.summary.r2) //平均絕對誤差 println(model.summary.meanAbsoluteError) //方差 println(model.summary.meanSquaredError) //新的集合x1,x2 預測y val testRdd = context.makeRDD(List((1,3),(2,6),(3,9),(4,12))) //根據上面的模型預測結果 val testSet = vectors.transform(testRdd.toDF("x1","x2")) val pre = model.transform(testSet) pre.show() //println(pre.predictions) } }
關于如何分析spark-mlib的線性回歸問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注億速云行業資訊頻道了解更多相關知識。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。