91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何用Python實現網頁正文的提取

發布時間:2022-01-18 15:28:21 來源:億速云 閱讀:292 作者:iii 欄目:編程語言

這篇文章主要介紹了如何用Python實現網頁正文的提取的相關知識,內容詳細易懂,操作簡單快捷,具有一定借鑒價值,相信大家閱讀完這篇如何用Python實現網頁正文的提取文章都會有所收獲,下面我們一起來看看吧。

一個典型的新聞網頁包括幾個不同區域:

如何用Python實現網頁正文的提取

新聞網頁區域

我們要提取的新聞要素包含在:

  • 標題區域

  • meta數據區域(發布時間等)

  • 配圖區域(如果想把配圖也提取)

  • 正文區域

而導航欄區域、相關鏈接區域的文字就不屬于該新聞的要素。

新聞的標題、發布時間、正文內容一般都是從我們抓取的html里面提取的。如果僅僅是一個網站的新聞網頁,提取這三個內容很簡單,寫三個正則表達式就可以完美提取了。然而,我們的爬蟲抓來的是成百上千的網站的網頁。對這么多不同格式的網頁寫正則表達式會累死人的,而且網頁一旦稍微改版,表達式可能就失效,維護這群表達式也是會累死人的。

累死人的做法當然想不通,我們就要探索一下好的算法來實現。

1. 標題的提取

標題基本上都會出現在html的<title>標簽里面,但是又被附加了諸如頻道名稱、網站名稱等信息;

標題還會出現在網頁的“標題區域”。

那么這兩個地方,從哪里提取標題比較容易呢?

網頁的“標題區域”沒有明顯的標識,不同網站的“標題區域”的html代碼部分千差萬別。所以這個區域并不容易提取出來。

那么就只剩下<title>標簽了,這個標簽很容易提取,無論是正則表達式,還是lxml解析都很容易,不容易的是如何去除頻道名稱、網站名稱等信息。

先來看看,<title>標簽里面都是設么樣子的附加信息:

  • 上海用“智慧”激活城市交通脈搏,讓道路更安全更有序更通暢_浦江頭條_澎湃新聞-The Paper

  • “滬港大學聯盟”今天在復旦大學成立_教育_新民網

  • 三亞老人腳踹司機致公交車失控撞墻 被判刑3年_社會

  • 外交部:中美外交安全對話9日在美舉行

  • 進博會:中國行動全球矚目,中國擔當世界點贊_南方觀瀾_南方網

  • 資本市場迎來重大改革 設立科創板有何深意?-新華網

觀察這些title不難發現,新聞標題和頻道名、網站名之間都是有一些連接符號的。那么我就可以通過這些連接符吧title分割,找出最長的部分就是新聞標題了。

這個思路也很容易實現,這里就不再上代碼了,留給小猿們作為思考練習題自己實現一下。

2. 發布時間提取

發布時間,指的是這個網頁在該網站上線的時間,一般它會出現在正文標題的下方——meta數據區域。從html代碼看,這個區域沒有什么特殊特征讓我們定位,尤其是在非常多的網站版面面前,定位這個區域幾乎是不可能的。這需要我們另辟蹊徑。
跟標題一樣,我們也先看看一些網站的發布時間都是怎么寫的:

  • 央視網2018年11月06日 22:22

  • 時間:2018-11-07 14:27:00

  • 2018-11-07 11:20:37 來源: 新華網

  • 來源:中國日報網 2018-11-07 08:06:39

  • 2018年11月07日 07:39:19

  • 2018-11-06 09:58 來源:澎湃新聞

這些寫在網頁上的發布時間,都有一個共同的特點,那就是一個表示時間的字符串,年月日時分秒,無外乎這幾個要素。通過正則表達式,我們列舉一些不同時間表達方式(也就那么幾種)的正則表達式,就可以從網頁文本中進行匹配提取發布時間了。

這也是一個很容易實現的思路,但是細節比較多,表達方式要涵蓋的盡可能多,寫好這么一個提取發布時間的函數也不是那么容易的哦。小猿們盡情發揮動手能力,看看自己能寫出怎樣的函數實現。這也是留給小猿們的一道練習題。

3. 正文的提取

正文(包括新聞配圖)是一個新聞網頁的主體部分,它在視覺上占據中間位置,是新聞的內容主要的文字區域。正文的提取有很多種方法,實現上有復雜也有簡單。本文介紹的方法,是結合老猿多年的實踐經驗和思考得出來的一個簡單快速的方法,姑且稱之為“節點文本密度法”。

我們知道,網頁的html代碼是由不同的標簽(tag)組成了一個樹狀結構樹,每個標簽是樹的一個節點。通過遍歷這個樹狀結構的每個節點,找到文本最多的節點,它就是正文所在的節點。根據這個思路,我們來實現一下代碼。

3.1 實現源碼

#!/usr/bin/env python3
#File: maincontent.py
#Author: veelion
import re
import time
import traceback
import cchardet
import lxml
import lxml.html
from lxml.html import HtmlComment
REGEXES = {
    'okMaybeItsACandidateRe': re.compile(
        'and|article|artical|body|column|main|shadow', re.I),
    'positiveRe': re.compile(
        ('article|arti|body|content|entry|hentry|main|page|'
         'artical|zoom|arti|context|message|editor|'
         'pagination|post|txt|text|blog|story'), re.I),
    'negativeRe': re.compile(
        ('copyright|combx|comment|com-|contact|foot|footer|footnote|decl|copy|'
         'notice|'
         'masthead|media|meta|outbrain|promo|related|scroll|link|pagebottom|bottom|'
         'other|shoutbox|sidebar|sponsor|shopping|tags|tool|widget'), re.I),
}
class MainContent:
    def __init__(self,):
        self.non_content_tag = set([
            'head',
            'meta',
            'script',
            'style',
            'object', 'embed',
            'iframe',
            'marquee',
            'select',
        ])
        self.title = ''
        self.p_space = re.compile(r'\s')
        self.p_html = re.compile(r'<html|</html>', re.IGNORECASE|re.DOTALL)
        self.p_content_stop = re.compile(r'正文.*結束|正文下|相關閱讀|聲明')
        self.p_clean_tree = re.compile(r'author|post-add|copyright')
    def get_title(self, doc):
        title = ''
        title_el = doc.xpath('//title')
        if title_el:
            title = title_el[0].text_content().strip()
        if len(title) < 7:
            tt = doc.xpath('//meta[@name="title"]')
            if tt:
                title = tt[0].get('content', '')
        if len(title) < 7:
            tt = doc.xpath('//*[contains(@id, "title") or contains(@class, "title")]')
            if not tt:
                tt =  doc.xpath('//*[contains(@id, "font01") or contains(@class, "font01")]')
            for t in tt:
                ti = t.text_content().strip()
                if ti in title and len(ti)*2 > len(title):
                    title = ti
                    break
                if len(ti) > 20: continue
                if len(ti) > len(title) or len(ti) > 7:
                    title = ti
        return title
    def shorten_title(self, title):
        spliters = [' - ', '–', '—', '-', '|', '::']
        for s in spliters:
            if s not in title:
                continue
            tts = title.split(s)
            if len(tts) < 2:
                continue
            title = tts[0]
            break
        return title
    def calc_node_weight(self, node):
        weight = 1
        attr = '%s %s %s' % (
            node.get('class', ''),
            node.get('id', ''),
            node.get('style', '')
        )
        if attr:
            mm = REGEXES['negativeRe'].findall(attr)
            weight -= 2 * len(mm)
            mm = REGEXES['positiveRe'].findall(attr)
            weight += 4 * len(mm)
        if node.tag in ['div', 'p', 'table']:
            weight += 2
        return weight
    def get_main_block(self, url, html, short_title=True):
        ''' return (title, etree_of_main_content_block)
        '''
        if isinstance(html, bytes):
            encoding = cchardet.detect(html)['encoding']
            if encoding is None:
                return None, None
            html = html.decode(encoding, 'ignore')
        try:
            doc = lxml.html.fromstring(html)
            doc.make_links_absolute(base_url=url)
        except :
            traceback.print_exc()
            return None, None
        self.title = self.get_title(doc)
        if short_title:
            self.title = self.shorten_title(self.title)
        body = doc.xpath('//body')
        if not body:
            return self.title, None
        candidates = []
        nodes = body[0].getchildren()
        while nodes:
            node = nodes.pop(0)
            children = node.getchildren()
            tlen = 0
            for child in children:
                if isinstance(child, HtmlComment):
                    continue
                if child.tag in self.non_content_tag:
                    continue
                if child.tag == 'a':
                    continue
                if child.tag == 'textarea':
                    # FIXME: this tag is only part of content?
                    continue
                attr = '%s%s%s' % (child.get('class', ''),
                                   child.get('id', ''),
                                   child.get('style'))
                if 'display' in attr and 'none' in attr:
                    continue
                nodes.append(child)
                if child.tag == 'p':
                    weight = 3
                else:
                    weight = 1
                text = '' if not child.text else child.text.strip()
                tail = '' if not child.tail else child.tail.strip()
                tlen += (len(text) + len(tail)) * weight
            if tlen < 10:
                continue
            weight = self.calc_node_weight(node)
            candidates.append((node, tlen*weight))
        if not candidates:
            return self.title, None
        candidates.sort(key=lambda a: a[1], reverse=True)
        good = candidates[0][0]
        if good.tag in ['p', 'pre', 'code', 'blockquote']:
            for i in range(5):
                good = good.getparent()
                if good.tag == 'div':
                    break
        good = self.clean_etree(good, url)
        return self.title, good
    def clean_etree(self, tree, url=''):
        to_drop = []
        drop_left = False
        for node in tree.iterdescendants():
            if drop_left:
                to_drop.append(node)
                continue
            if isinstance(node, HtmlComment):
                to_drop.append(node)
                if self.p_content_stop.search(node.text):
                    drop_left = True
                continue
            if node.tag in self.non_content_tag:
                to_drop.append(node)
                continue
            attr = '%s %s' % (
                node.get('class', ''),
                node.get('id', '')
            )
            if self.p_clean_tree.search(attr):
                to_drop.append(node)
                continue
            aa = node.xpath('.//a')
            if aa:
                text_node = len(self.p_space.sub('', node.text_content()))
                text_aa = 0
                for a in aa:
                    alen = len(self.p_space.sub('', a.text_content()))
                    if alen > 5:
                        text_aa += alen
                if text_aa > text_node * 0.4:
                    to_drop.append(node)
        for node in to_drop:
            try:
                node.drop_tree()
            except:
                pass
        return tree
    def get_text(self, doc):
        lxml.etree.strip_elements(doc, 'script')
        lxml.etree.strip_elements(doc, 'style')
        for ch in doc.iterdescendants():
            if not isinstance(ch.tag, str):
                continue
            if ch.tag in ['div', 'h2', 'h3', 'h4', 'p', 'br', 'table', 'tr', 'dl']:
                if not ch.tail:
                    ch.tail = '\n'
                else:
                    ch.tail = '\n' + ch.tail.strip() + '\n'
            if ch.tag in ['th', 'td']:
                if not ch.text:
                    ch.text = '  '
                else:
                    ch.text += '  '
            # if ch.tail:
            #     ch.tail = ch.tail.strip()
        lines = doc.text_content().split('\n')
        content = []
        for l in lines:
            l = l.strip()
            if not l:
                continue
            content.append(l)
        return '\n'.join(content)
    def extract(self, url, html):
        '''return (title, content)
        '''
        title, node = self.get_main_block(url, html)
        if node is None:
            print('\tno main block got !!!!!', url)
            return title, '', ''
        content = self.get_text(node)
        return title, content

3.2 代碼解析

跟新聞爬蟲一樣,我們把整個算法實現為一個類:MainContent。

首先,定義了一個全局變量: REGEXES。它收集了一些經常出現在標簽的class和id中的關鍵詞,這些詞標識著該標簽可能是正文或者不是。我們用這些詞來給標簽節點計算權重,也就是方法calc_node_weight()的作用。

MainContent類的初始化,先定義了一些不會包含正文的標簽 self.non_content_tag,遇到這些標簽節點,直接忽略掉即可。

本算法提取標題實現在get_title()這個函數里面。首先,它先獲得<title>標簽的內容,然后試著從<meta>里面找title,再嘗試從<body>里面找id和class包含title的節點,最后把從不同地方獲得的可能是標題的文本進行對比,最終獲得標題。對比的原則是:

  • <meta><body>里面找到的疑似標題如果包含在<title>標簽里面,則它是一個干凈(沒有頻道名、網站名)的標題;

  • 如果疑似標題太長就忽略

  • 主要把<title>標簽作為標題

<title>標簽里面獲得標題,就要解決標題清洗的問題。這里實現了一個簡單的方法: clean_title()。

在這個實現中,我們使用了lxml.html把網頁的html轉化成一棵樹,從body節點開始遍歷每一個節點,看它直接包含(不含子節點)的文本的長度,從中找出含有最長文本的節點。這個過程實現在方法:get_main_block()中。其中一些細節,小猿們可以仔細體會一下。

其中一個細節就是,clean_node()這個函數。通過get_main_block()得到的節點,有可能包含相關新聞的鏈接,這些鏈接包含大量新聞標題,如果不去除,就會給新聞內容帶來雜質(相關新聞的標題、概述等)。

還有一個細節,get_text()函數。我們從main block中提取文本內容,不是直接使用text_content(),而是做了一些格式方面的處理,比如在一些標簽后面加入換行符合\n,在table的單元格之間加入空格。這樣處理后,得到的文本格式比較符合原始網頁的效果。

爬蟲知識點

1. cchardet模塊
用于快速判斷文本編碼的模塊

2. lxml.html模塊
結構化html代碼的模塊,通過xpath解析網頁的工具,高效易用,是寫爬蟲的居家必備的模塊。

3. 內容提取的復雜性
我們這里實現的正文提取的算法,基本上可以正確處理90%以上的新聞網頁。
但是,世界上沒有千篇一律的網頁一樣,也沒有一勞永逸的提取算法。大規模使用本文算法的過程中,你會碰到奇葩的網頁,這個時候,你就要針對這些網頁,來完善這個算法類。

關于“如何用Python實現網頁正文的提取”這篇文章的內容就介紹到這里,感謝各位的閱讀!相信大家對“如何用Python實現網頁正文的提取”知識都有一定的了解,大家如果還想學習更多知識,歡迎關注億速云行業資訊頻道。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

平原县| 鄂托克旗| 壶关县| 平顶山市| 武义县| 呼伦贝尔市| 务川| 昌都县| 禹州市| 绥滨县| 府谷县| 盘锦市| 宣汉县| 邯郸县| 宜春市| 堆龙德庆县| 海林市| 桐柏县| 金川县| 宣威市| 南岸区| 盐池县| 东乌| 靖边县| 秦安县| 景宁| 石河子市| 普安县| 福鼎市| 集贤县| 彰化县| 伽师县| 荆州市| 盖州市| 清新县| 蒙阴县| 濮阳县| 伊吾县| 潢川县| 富平县| 建瓯市|