91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何用Pyecharts生成云詞

發布時間:2021-12-14 09:47:59 來源:億速云 閱讀:236 作者:iii 欄目:開發技術

本篇內容介紹了“如何用Pyecharts生成云詞”的有關知識,在實際案例的操作過程中,不少人都會遇到這樣的困境,接下來就讓小編帶領大家學習一下如何處理這些情況吧!希望大家仔細閱讀,能夠學有所成!

前言

首先我們得先了解兩個概念——上胸圍 & 下胸圍,具體看示意圖:

如何用Pyecharts生成云詞

通過上胸圍與下胸圍的差值,我們就可以確定罩杯的大小了,具體的對應關系可參考下圖:

如何用Pyecharts生成云詞

有了下胸圍 & 罩杯就能確定文胸對應的尺碼了~
當然這又有分為英式尺碼和國際尺碼,具體參考下圖:

如何用Pyecharts生成云詞

from pyecharts.charts import *from pyecharts import options as optsfrom pyecharts.commons.utils import JsCodefrom collections import Counterimport reimport pandas as pdimport jiebaimport jieba.posseg as psgfrom stylecloud import gen_stylecloudfrom IPython.display import Image

數據處理

原始數據是txt格式,為了方便處理,這邊轉為Dataframe~

尺碼部分通過正則表達式提取出對應的下胸圍和罩杯,具體代碼如下:

In [2]:

patterns = re.compile(r'(?P<datetime>.*),顏色分類:(?P<color>.*?);尺碼:(?P<size>.*?),(?P<comment>.*)')with open('/home/kesci/input/cup6439/cup_all.txt', 'r') as f:
    data = f.readlines()obj_list = []for item in data:
    obj = patterns.search(item)
    obj_list.append(obj.groupdict())
    data = pd.DataFrame(obj_list)data = pd.concat([data, data['size'].str.extract('(?P<circumference>[7-9]{1}[0|5]{1}).*(?P<cup>[a-zA-Z])', 
                                          expand=True)], axis=1)data.head()

Out[2]:


colorcommentdatetimesizecircumferencecup
0膚色薄款不錯給婆婆買的,準備再買兩件2017-04-20 13:06:0438/85C85C
1H007寶藍色加粉色和想象的一樣好!價格實惠!攏胸效果很好穿著舒服,就是我要的是寶藍加膚色!給發了一件粉色,也不...2017-04-23 21:44:2034/75B75B
2超薄杯純潔白真的不錯2017-05-18 10:36:3180C80C
3淺紫一次買了兩件,內衣質量不錯,無鋼圈設計穿上很舒服也很有型,值得購買。2017-04-19 20:44:5136B=80B80B
4卡其色因為手機號填錯了結果直接被退件了_(:_」&ang;)_但是賣家還是超好心地給我重新送了回來qwq2017-05-07 09:16:4775A75A

商品類別

我們通過jieba分詞來看看商品分類中最常出現的是哪些關鍵詞~

  • 顏色:膚色 > 黑色 > 粉色 > 白色;

  • 薄款 > 厚款;

  • 鋼圈似乎是個比較重要的賣點;

In [3]:

w_all = []for item in data.color:
    w_l = psg.cut(item)
    w_l = [w for w, f in w_l if f in ('n', 'nr') and len(w)>1]
    w_all.extend(w_l)c = Counter(w_all)
Building prefix dict from the default dictionary ...
Dumping model to file cache /tmp/jieba.cache
Loading model cost 0.769 seconds.
Prefix dict has been built succesfully.

In [4]:

counter = c.most_common(50)bar = (Bar(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='800px'))
       .add_xaxis([x for x, y in counter[::-1]])
       .add_yaxis('出現次數', [y for x, y in counter[::-1]], category_gap='30%')
       .set_global_opts(title_opts=opts.TitleOpts(title="出現最多的關鍵詞",
                                                  pos_left="center",
                                                  title_textstyle_opts=opts.TextStyleOpts(font_size=20)),
                        datazoom_opts=opts.DataZoomOpts(range_start=70, range_end=100, orient='vertical'),
                        visualmap_opts=opts.VisualMapOpts(is_show=False, max_=6e4, min_=3000, dimension=0,
                                range_color=['#f5d69f', '#f5898b', '#ef5055']),
                        legend_opts=opts.LegendOpts(is_show=False),
                        xaxis_opts=opts.AxisOpts(is_show=False,),
                        yaxis_opts=opts.AxisOpts(axistick_opts=opts.AxisTickOpts(is_show=False),
                                                 axisline_opts=opts.AxisLineOpts(is_show=False)))
       .set_series_opts(label_opts=opts.LabelOpts(is_show=True,
                                                  position='right',
                                                  font_style='italic'),
                        itemstyle_opts={"normal": {
                                                    "barBorderRadius": [30, 30, 30, 30],
                                                    'shadowBlur': 10,
                                                    'shadowColor': 'rgba(120, 36, 50, 0.5)',
                                                    'shadowOffsetY': 5,
                                                }
                                       }).reversal_axis())bar.render_notebook()

Out[4]:

In [5]:

t_data = data.groupby(['circumference', 'cup'])['datetime'].count().reset_index()t_data.columns = ['circumference', 'cup', 'num']#t_data.num = round(t_data.num.div(t_data.num.sum(axis=0), axis=0) * 100, 1)data_pair = [
            {"name": 'A',
              "label":{"show": True},
              "children": []},
            {"name": 'B',
              "label":{"show": True},
              "children": []},
            {"name": 'C',
              "label":{"show": True},
              'shadowBlur': 10,
              'shadowColor': 'rgba(120, 36, 50, 0.5)',
              'shadowOffsetY': 5,
              "children": []},
            {"name": 'D',
              "label":{"show": False},
              "children": []},
            {"name": 'E',
              "label":{"show": False},
              "children": []}
    ]for idx, row in t_data.iterrows():
    t_dict = {"name": row.cup,
              "label":{"show": True},
              "children": []}
    if row.num > 3000:
        child_data = {"name": '{}-{}'.format(row.circumference, row.cup), "value":row.num, "label":{"show": True}}
    else:
        child_data = {"name": '{}-{}'.format(row.circumference, row.cup), "value":row.num, "label":{"show": False}}
    if row.cup == "A":
        data_pair[0]['children'].append(child_data)   
    elif row.cup == "B":
        data_pair[1]['children'].append(child_data)   
    elif row.cup == "C":
        data_pair[2]['children'].append(child_data)  
    elif row.cup == "D":
        data_pair[3]['children'].append(child_data)  
    elif row.cup == "E":
        data_pair[4]['children'].append(child_data)

尺碼分布

  • 單看罩杯的話:B > A > C

  • 細分到具體尺碼:75B > 80B > 75A > 70A

In [6]:

c = (Sunburst(
        init_opts=opts.InitOpts(
            theme='purple-passion',
            width="1000px",
            height="1000px"))
    .add(
        "",
        data_pair=data_pair,
        highlight_policy="ancestor",
        radius=[0, "100%"],
        sort_='null',
        levels=[
            {},
            {
                "r0": "20%",
                "r": "48%",
                "itemStyle": {"borderColor": 'rgb(220,220,220)', "borderWidth": 2}
            },
            {"r0": "50%", "r": "80%", "label": {"align": "right"},
                "itemStyle": {"borderColor": 'rgb(220,220,220)', "borderWidth": 1}}
        ],
    )
    .set_global_opts(
        visualmap_opts=opts.VisualMapOpts(is_show=False, max_=90000, min_=3000, 
                                range_color=['#f5d69f', '#f5898b', '#ef5055']),
        title_opts=opts.TitleOpts(title="文 胸\n\n尺 碼 分 布",
                                               pos_left="center",
                                               pos_top="center",
                                               title_textstyle_opts=opts.TextStyleOpts(font_style='oblique', font_size=30),))
    .set_series_opts(label_opts=opts.LabelOpts(font_size=18, formatter="{b}: {c}")))c.render_notebook()

Out[6]:

罩杯分布

我們通過不同的胸圍來看看罩杯的比例:

  • 下胸圍=70:A > B > C

  • 下胸圍=75:B > A > C

  • 下胸圍=80:B > A > C

  • 下胸圍=85:B > C > A

  • 下胸圍=90:C > B > A

  • 下胸圍=95:C > B > D

In [7]:

grid = Grid(init_opts=opts.InitOpts(theme='purple-passion', width='1000px', height='1000px'))for idx, c in enumerate(['70', '75', '80', '85', '90', '95']):
    
    if idx % 2 == 0:
        x = 30
        y = int(idx/2) * 30 + 20
    else:
        x = 70
        y = int(idx/2) * 30 + 20
    pos_x = str(x)+'%'
    pos_y = str(y)+'%'
    
    pie = Pie(init_opts=opts.InitOpts())
    
    pie.add(
            c,
            [[row.cup, row.num]for i, row in t_data[t_data.circumference==c].iterrows()],
            center=[pos_x, pos_y],
            radius=[70, 100],
            label_opts=opts.LabelOpts(formatter='{b}:aegqsqibtmh%'),
    )
    
    pie.set_global_opts(
        title_opts=opts.TitleOpts(title="下胸圍={}".format(c),
                                  pos_top=str(y-1)+'%', pos_left=str(x-4)+'%',
                                  title_textstyle_opts=opts.TextStyleOpts(font_size=15)),
        legend_opts=opts.LegendOpts(is_show=True))
    grid.add(pie,grid_opts=opts.GridOpts(pos_left='20%'))grid.render_notebook()

Out[7]:

評論詞云

最后我們來看看評論中經常說到的是什么詞語吧~

In [8]:

w_all = []for item in data.comment:
    w_l = jieba.lcut(item)
    w_all.extend(w_l)c = Counter(w_all)

In [10]:

gen_stylecloud(' '.join(w_all),
              size=1000,
              #max_words=1000,
              font_path='/home/kesci/work/font/simhei.ttf',
              #palette='palettable.tableau.TableauMedium_10',
              icon_name='fas fa-heartbeat',
              output_name='comment.png',
              custom_stopwords=['沒有','用戶','填寫','評論']
              )Image(filename='comment.png')

Out[10]:

如何用Pyecharts生成云詞

“如何用Pyecharts生成云詞”的內容就介紹到這里了,感謝大家的閱讀。如果想了解更多行業相關的知識可以關注億速云網站,小編將為大家輸出更多高質量的實用文章!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

察隅县| 新闻| 郯城县| 芦山县| 博客| 嘉禾县| 休宁县| 塔城市| 巴中市| 阿鲁科尔沁旗| 连云港市| 新平| 海南省| 泰州市| 宿州市| 漾濞| 分宜县| 河源市| 泾源县| 建平县| 南召县| 潜江市| 凌云县| 邵阳市| 文登市| 双峰县| 鸡西市| 和林格尔县| 古交市| 当雄县| 松潘县| 民权县| 隆林| 遵义县| 沛县| 积石山| 万年县| 孙吴县| 陆丰市| 旬阳县| 文安县|