您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關如何用Python實時監控,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
最近突然有個奇妙的想法,就是當我對著電腦屏幕的時候,電腦會先識別屏幕上的人臉是否是本人,如果識別是本人的話需要回答電腦說的暗語,答對了才會解鎖并且有三次機會。如果都沒答對就會發送郵件給我,通知有人在動我的電腦并上傳該人頭像。
環境是win10代碼我使用的是python3所以在開始之前需要安裝一些依賴包,請按順序安裝否者會報錯
pip install cmake -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install dlib -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install face_recognition -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
接下來是構建識別人臉以及對比人臉的代碼
import face_recognition
import cv2
import numpy as np
video_capture = cv2.VideoCapture(0)
my_image = face_recognition.load_image_file("my.jpg")
my_face_encoding = face_recognition.face_encodings(my_image)[0]
known_face_encodings = [
my_face_encoding
]
known_face_names = [
"Admin"
]
face_names = []
face_locations = []
face_encodings = []
process_this_frame = True
while True:
ret, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
left *= 4
right *= 4
bottom *= 4
font = cv2.FONT_HERSHEY_DUPLEX
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video_capture.release()
cv2.destroyAllWindows()
其中my.jpg需要你自己拍攝上傳,運行可以發現在你臉上會出現Admin的框框,我去網上找了張圖片類似這樣子
識別功能已經完成了接下來就是語音識別和語音合成,這需要使用到百度AI來實現了,去登錄百度AI的官網到控制臺選擇左邊的語音技術,然后點擊面板的創建應用按鈕,來到創建應用界面
打造電腦版人臉屏幕解鎖神器
創建后會得到AppID、API Key、Secret Key記下來,然后開始寫語音合成的代碼。安裝百度AI提供的依賴包
pip install baidu-aip -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install playsound -i https://pypi.tuna.tsinghua.edu.cn/simple
然后是簡單的語音播放代碼,運行下面代碼可以聽到萌妹子的聲音
import sys
from aip import AipSpeech
from playsound import playsound
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
result = client.synthesis('你好吖', 'zh', 1, {'vol': 5, 'per': 4, 'spd': 5, })
if not isinstance(result, dict):
with open('auido.mp3', 'wb') as file:
file.write(result)
filepath = eval(repr(sys.path[0]).replace('\\', '/')) + '//auido.mp3'
playsound(filepath)
有了上面的代碼就完成了檢測是否在電腦前(人臉識別)以及電腦念出暗語(語音合成)然后我們還需要回答暗號給電腦,所以還需要完成語音識別。
import wave
import pyaudio
from aip import AipSpeech
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 8000
RECORD_SECONDS = 3
WAVE_OUTPUT_FILENAME = "output.wav"
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
print("* recording")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
print("* done recording")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
def get_file_content():
with open(WAVE_OUTPUT_FILENAME, 'rb') as fp:
return fp.read()
result = client.asr(get_file_content(), 'wav', 8000, {'dev_pid': 1537, })
print(result)
運行此代碼之前需要安裝pyaudio依賴包,由于在win10系統上安裝會報錯所以可以通過如下方式安裝。到這個鏈接 https://www.lfd.uci.edu/~gohlke/pythonlibs/#pyaudio 去下載對應的安裝包然后安裝即可。
運行后我說了你好,可以看到識別出來了。那么我們的小模塊功能就都做好了接下來就是如何去整合它們。可以發現在人臉識別代碼中if matches[best_match_index]這句判斷代碼就是判斷是否為電腦主人,所以我們把這個判斷語句當作main函數的入口。
if matches[best_match_index]:
# 在這里寫識別到之后的功能
name = known_face_names[best_match_index]
那么識別到后我們應該讓電腦發出詢問暗號,也就是語音合成代碼,然我們將它封裝成一個函數,順便重構下人臉識別的代碼。
import cv2
import time
import numpy as np
import face_recognition
video_capture = cv2.VideoCapture(0)
my_image = face_recognition.load_image_file("my.jpg")
my_face_encoding = face_recognition.face_encodings(my_image)[0]
known_face_encodings = [
my_face_encoding
]
known_face_names = [
"Admin"
]
face_names = []
face_locations = []
face_encodings = []
process_this_frame = True
def speak(content):
import sys
from aip import AipSpeech
from playsound import playsound
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
result = client.synthesis(content, 'zh', 1, {'vol': 5, 'per': 0, 'spd': 5, })
if not isinstance(result, dict):
with open('auido.mp3', 'wb') as file:
file.write(result)
filepath = eval(repr(sys.path[0]).replace('\\', '/')) + '//auido.mp3'
playsound(filepath)
try:
while True:
ret, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
speak("識別到人臉,開始詢問暗號,請回答接下來我說的問題")
time.sleep(1)
speak("天王蓋地虎")
error = 1 / 0
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
left *= 4
right *= 4
bottom *= 4
font = cv2.FONT_HERSHEY_DUPLEX
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
except Exception as e:
print(e)
finally:
video_capture.release()
cv2.destroyAllWindows()
這里有一點需要注意,由于playsound播放音樂的時候會一直占用這個資源,所以播放下一段音樂的時候會報錯,解決方法是修改~\Python37\Lib\site-packages下的playsound.py文件,找到如下代碼
在sleep函數下面添加winCommand('close', alias)這句代碼,保存下就可以了。運行發現可以正常將兩句話都說出來。那么說出來之后就要去監聽了,我們還要打包一個函數。
def record():
import wave
import json
import pyaudio
from aip import AipSpeech
APP_ID = ''
API_KEY = ''
SECRET_KEY = ''
client = AipSpeech(APP_ID, API_KEY, SECRET_KEY)
CHUNK = 1024
FORMAT = pyaudio.paInt16
CHANNELS = 1
RATE = 8000
RECORD_SECONDS = 3
WAVE_OUTPUT_FILENAME = "output.wav"
p = pyaudio.PyAudio()
stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, input=True, frames_per_buffer=CHUNK)
print("* recording")
frames = []
for i in range(0, int(RATE / CHUNK * RECORD_SECONDS)):
data = stream.read(CHUNK)
frames.append(data)
print("* done recording")
stream.stop_stream()
stream.close()
p.terminate()
wf = wave.open(WAVE_OUTPUT_FILENAME, 'wb')
wf.setnchannels(CHANNELS)
wf.setsampwidth(p.get_sample_size(FORMAT))
wf.setframerate(RATE)
wf.writeframes(b''.join(frames))
def get_file_content():
with open(WAVE_OUTPUT_FILENAME, 'rb') as fp:
return fp.read()
result = client.asr(get_file_content(), 'wav', 8000, {'dev_pid': 1537, })
result = json.loads(str(result).replace("'", '"'))
return result["result"][0]
將識別到人臉后的代碼修改成如下
if matches[best_match_index]:
speak("識別到人臉,開始詢問暗號,請回答接下來我說的問題")
time.sleep(1)
speak("天王蓋地虎")
flag = False
for times in range(0, 3):
content = record()
if "小雞燉蘑菇" in content:
speak("暗號通過")
flag = True
break
else:
speak("暗號不通過,再試一次")
if flag:
print("解鎖")
else:
print("發送郵件并將壞人人臉圖片上傳!")
error = 1 / 0
name = known_face_names[best_match_index]
運行看看效果,回答電腦小雞燉蘑菇,電腦回答暗號通過。這樣功能就基本上完成了。
至于發送郵件的功能和鎖屏解鎖的功能我就不一一去實現了,我想這應該難不倒大家的。鎖屏功能可以HOOK讓鍵盤時間無效化,然后用窗口再覆蓋整個桌面即可,至于郵箱發送網上文章很多的。
上述就是小編為大家分享的如何用Python實時監控了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。