您好,登錄后才能下訂單哦!
小編給大家分享一下關于keras分類模型中輸入數據與標簽維度的案例,希望大家閱讀完這篇文章后大所收獲,下面讓我們一起去探討吧!
在《python深度學習》這本書中。
一、21頁mnist十分類
導入數據集 from keras.datasets import mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() 初始數據維度: >>> train_images.shape (60000, 28, 28) >>> len(train_labels) 60000 >>> train_labels array([5, 0, 4, ..., 5, 6, 8], dtype=uint8) 數據預處理: train_images = train_images.reshape((60000, 28 * 28)) train_images = train_images.astype('float32') / 255 train_labels = to_categorical(train_labels) 之后: print(train_images, type(train_images), train_images.shape, train_images.dtype) print(train_labels, type(train_labels), train_labels.shape, train_labels.dtype) 結果: [[0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.]] <class 'numpy.ndarray'> (60000, 784) float32 [[0. 0. 0. ... 0. 0. 0.] [1. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] ... [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 0. 0.] [0. 0. 0. ... 0. 1. 0.]] <class 'numpy.ndarray'> (60000, 10) float32
二、51頁IMDB二分類
導入數據:
from keras.datasets import imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
參數 num_words=10000 的意思是僅保留訓練數據中前 10 000 個最常出現的單詞。
train_data和test_data都是numpy.ndarray類型,都是一維的(共25000個元素,相當于25000個list),其中每個list代表一條評論,每個list中的每個元素的值范圍在0-9999 ,代表10000個最常見單詞的每個單詞的索引,每個list長度不一,因為每條評論的長度不一,例如train_data中的list最短的為11,最長的為189。
train_labels和test_labels都是含25000個元素(元素的值要不0或者1,代表兩類)的list。
數據預處理:
# 將整數序列編碼為二進制矩陣 def vectorize_sequences(sequences, dimension=10000): # Create an all-zero matrix of shape (len(sequences), dimension) results = np.zeros((len(sequences), dimension)) for i, sequence in enumerate(sequences): results[i, sequence] = 1. # set specific indices of results[i] to 1s return results x_train = vectorize_sequences(train_data) x_test = vectorize_sequences(test_data) 第一種方式:shape為(25000,) y_train = np.asarray(train_labels).astype('float32') #就用這種方式就行了 y_test = np.asarray(test_labels).astype('float32') 第二種方式:shape為(25000,1) y_train = np.asarray(train_labels).astype('float32').reshape(25000, 1) y_test = np.asarray(test_labels).astype('float32').reshape(25000, 1) 第三種方式:shape為(25000,2) y_train = to_categorical(train_labels) #變成one-hot向量 y_test = to_categorical(test_labels)
第三種方式,相當于把二分類看成了多分類,所以網絡的結構同時需要更改,
最后輸出的維度:1->2
最后的激活函數:sigmoid->softmax
損失函數:binary_crossentropy->categorical_crossentropy
預處理之后,train_data和test_data變成了shape為(25000,10000),dtype為float32的ndarray(one-hot向量),train_labels和test_labels變成了shape為(25000,)的一維ndarray,或者(25000,1)的二維ndarray,或者shape為(25000,2)的one-hot向量。
注:
1.sigmoid對應binary_crossentropy,softmax對應categorical_crossentropy
2.網絡的所有輸入和目標都必須是浮點數張量
補充知識:keras輸入數據的方法:model.fit和model.fit_generator
1.第一種,普通的不用數據增強的
from keras.datasets import mnist,cifar10,cifar100 (X_train, y_train), (X_valid, Y_valid) = cifar10.load_data() model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, shuffle=True, verbose=1, validation_data=(X_valid, Y_valid), )
2.第二種,帶數據增強的 ImageDataGenerator,可以旋轉角度、平移等操作。
from keras.preprocessing.image import ImageDataGenerator (trainX, trainY), (testX, testY) = cifar100.load_data() trainX = trainX.astype('float32') testX = testX.astype('float32') trainX /= 255. testX /= 255. Y_train = np_utils.to_categorical(trainY, nb_classes) Y_test = np_utils.to_categorical(testY, nb_classes) generator = ImageDataGenerator(rotation_range=15, width_shift_range=5./32, height_shift_range=5./32) generator.fit(trainX, seed=0) model.fit_generator(generator.flow(trainX, Y_train, batch_size=batch_size), steps_per_epoch=len(trainX) // batch_size, epochs=nb_epoch, callbacks=callbacks, validation_data=(testX, Y_test), validation_steps=testX.shape[0] // batch_size, verbose=1)
看完了這篇文章,相信你對關于keras分類模型中輸入數據與標簽維度的案例有了一定的了解,想了解更多相關知識,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。