您好,登錄后才能下訂單哦!
小編給大家分享一下如何利用scikitlearn畫ROC曲線,希望大家閱讀完這篇文章后大所收獲,下面讓我們一起去探討方法吧!
一個完整的數據挖掘模型,最后都要進行模型評估,對于二分類來說,AUC,ROC這兩個指標用到最多,所以 利用sklearn里面相應的函數進行模塊搭建。
具體實現的代碼可以參照下面博友的代碼,評估svm的分類指標。注意里面的一些細節需要注意,一個是調用roc_curve 方法時,指明目標標簽,否則會報錯。
具體是這個參數的設置pos_label ,以前在unionbigdata實習時學到的。
重點是以下的代碼需要根據實際改寫:
mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] y_target = np.r_[train_y,test_y] cv = StratifiedKFold(y_target, n_folds=6) #畫ROC曲線和計算AUC fpr, tpr, thresholds = roc_curve(test_y, predict,pos_label = 2)##指定正例標簽,pos_label = ###########在數之聯的時候學到的,要制定正例 mean_tpr += interp(mean_fpr, fpr, tpr) #對mean_tpr在mean_fpr處進行插值,通過scipy包調用interp()函數 mean_tpr[0] = 0.0 #初始處為0 roc_auc = auc(fpr, tpr) #畫圖,只需要plt.plot(fpr,tpr),變量roc_auc只是記錄auc的值,通過auc()函數能計算出來 plt.plot(fpr, tpr, lw=1, label='ROC %s (area = %0.3f)' % (classifier, roc_auc))
然后是博友的參考代碼:
# -*- coding: utf-8 -*- """ Created on Sun Apr 19 08:57:13 2015 @author: shifeng """ print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import StratifiedKFold ############################################################################### # Data IO and generation,導入iris數據,做數據準備 # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2]#去掉了label為2,label只能二分,才可以。 n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] ############################################################################### # Classification and ROC analysis #分類,做ROC分析 # Run classifier with cross-validation and plot ROC curves #使用6折交叉驗證,并且畫ROC曲線 cv = StratifiedKFold(y, n_folds=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state)#注意這里,probability=True,需要,不然預測的時候會出現異常。另外rbf核效果更好些。 mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train, test) in enumerate(cv): #通過訓練數據,使用svm線性核建立模型,并對測試集進行測試,求出預測得分 probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # print set(y[train]) #set([0,1]) 即label有兩個類別 # print len(X[train]),len(X[test]) #訓練集有84個,測試集有16個 # print "++",probas_ #predict_proba()函數輸出的是測試集在lael各類別上的置信度, # #在哪個類別上的置信度高,則分為哪類 # Compute ROC curve and area the curve #通過roc_curve()函數,求出fpr和tpr,以及閾值 fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) #對mean_tpr在mean_fpr處進行插值,通過scipy包調用interp()函數 mean_tpr[0] = 0.0 #初始處為0 roc_auc = auc(fpr, tpr) #畫圖,只需要plt.plot(fpr,tpr),變量roc_auc只是記錄auc的值,通過auc()函數能計算出來 plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) #畫對角線 plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') mean_tpr /= len(cv) #在mean_fpr100個點,每個點處插值插值多次取平均 mean_tpr[-1] = 1.0 #坐標最后一個點為(1,1) mean_auc = auc(mean_fpr, mean_tpr) #計算平均AUC值 #畫平均ROC曲線 #print mean_fpr,len(mean_fpr) #print mean_tpr plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
補充知識:批量進行One-hot-encoder且進行特征字段拼接,并完成模型訓練demo
import org.apache.spark.ml.Pipeline import org.apache.spark.ml.feature.{StringIndexer, OneHotEncoder} import org.apache.spark.ml.feature.VectorAssembler import ml.dmlc.xgboost4j.scala.spark.{XGBoostEstimator, XGBoostClassificationModel} import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator import org.apache.spark.ml.tuning.{ParamGridBuilder, CrossValidator} import org.apache.spark.ml.PipelineModel val data = (spark.read.format("csv") .option("sep", ",") .option("inferSchema", "true") .option("header", "true") .load("/Affairs.csv")) data.createOrReplaceTempView("res1") val affairs = "case when affairs>0 then 1 else 0 end as affairs," val df = (spark.sql("select " + affairs + "gender,age,yearsmarried,children,religiousness,education,occupation,rating" + " from res1 ")) val categoricals = df.dtypes.filter(_._2 == "StringType") map (_._1) val indexers = categoricals.map( c => new StringIndexer().setInputCol(c).setOutputCol(s"${c}_idx") ) val encoders = categoricals.map( c => new OneHotEncoder().setInputCol(s"${c}_idx").setOutputCol(s"${c}_enc").setDropLast(false) ) val colArray_enc = categoricals.map(x => x + "_enc") val colArray_numeric = df.dtypes.filter(_._2 != "StringType") map (_._1) val final_colArray = (colArray_numeric ++ colArray_enc).filter(!_.contains("affairs")) val vectorAssembler = new VectorAssembler().setInputCols(final_colArray).setOutputCol("features") /* val pipeline = new Pipeline().setStages(indexers ++ encoders ++ Array(vectorAssembler)) pipeline.fit(df).transform(df) */ /// // Create an XGBoost Classifier val xgb = new XGBoostEstimator(Map("num_class" -> 2, "num_rounds" -> 5, "objective" -> "binary:logistic", "booster" -> "gbtree")).setLabelCol("affairs").setFeaturesCol("features") // XGBoost paramater grid val xgbParamGrid = (new ParamGridBuilder() .addGrid(xgb.round, Array(10)) .addGrid(xgb.maxDepth, Array(10,20)) .addGrid(xgb.minChildWeight, Array(0.1)) .addGrid(xgb.gamma, Array(0.1)) .addGrid(xgb.subSample, Array(0.8)) .addGrid(xgb.colSampleByTree, Array(0.90)) .addGrid(xgb.alpha, Array(0.0)) .addGrid(xgb.lambda, Array(0.6)) .addGrid(xgb.scalePosWeight, Array(0.1)) .addGrid(xgb.eta, Array(0.4)) .addGrid(xgb.boosterType, Array("gbtree")) .addGrid(xgb.objective, Array("binary:logistic")) .build()) // Create the XGBoost pipeline val pipeline = new Pipeline().setStages(indexers ++ encoders ++ Array(vectorAssembler, xgb)) // Setup the binary classifier evaluator val evaluator = (new BinaryClassificationEvaluator() .setLabelCol("affairs") .setRawPredictionCol("prediction") .setMetricName("areaUnderROC")) // Create the Cross Validation pipeline, using XGBoost as the estimator, the // Binary Classification evaluator, and xgbParamGrid for hyperparameters val cv = (new CrossValidator() .setEstimator(pipeline) .setEvaluator(evaluator) .setEstimatorParamMaps(xgbParamGrid) .setNumFolds(3) .setSeed(0)) // Create the model by fitting the training data val xgbModel = cv.fit(df) // Test the data by scoring the model val results = xgbModel.transform(df) // Print out a copy of the parameters used by XGBoost, attention pipeline (xgbModel.bestModel.asInstanceOf[PipelineModel] .stages(5).asInstanceOf[XGBoostClassificationModel] .extractParamMap().toSeq.foreach(println)) results.select("affairs","prediction").show println("---Confusion Matrix------") results.stat.crosstab("affairs","prediction").show() // What was the overall accuracy of the model, using AUC val auc = evaluator.evaluate(results) println("----AUC--------") println("auc="+auc)
看完了這篇文章,相信你對如何利用scikitlearn畫ROC曲線有了一定的了解,想了解更多相關知識,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。