您好,登錄后才能下訂單哦!
圖像濾波在opencv中可以有多種實現形式
自定義濾波
如使用3×3的掩模:
對圖像進行處理.
使用函數filter2D()實現
#include<opencv2/opencv.hpp> using namespace cv; int main() { //函數調用filter2D功能 Mat src,dst; src = imread("E:/image/image/daibola.jpg"); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input", src); src.copyTo(dst); Mat kernel = (Mat_<int>(3,3)<<1,1,1,1,1,-1,-1,-1,-1); double t = (double)getTickCount(); filter2D(src, dst, src.depth(), kernel); std::cout<<((double)getTickCount()-t)/getTickFrequency()<<std::endl; namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output", dst); printf("%d",src.channels()); waitKey(); return 0; }
通過像素點操作實現
#include<opencv2/opencv.hpp> using namespace cv; int main() { Mat src, dst; src = imread("E:/image/image/daibola.jpg"); CV_Assert(src.depth() == CV_8U); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input",src); src.copyTo(dst); for(int row = 1; row<(src.rows - 1); row++) { const uchar* previous = src.ptr<uchar>(row - 1); const uchar* current = src.ptr<uchar>(row); const uchar* next = src.ptr<uchar>(row + 1); uchar* output = dst.ptr<uchar>(row); for(int col = src.channels(); col < (src.cols - 1)*src.channels(); col++) { *output = saturate_cast<uchar>(1 * current[col] + previous[col] - next[col] + current[col - src.channels()] - current[col + src.channels()]); output++; } } namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output",dst); waitKey(); return 0; }
特定形式濾波
常用的有:
blur(src,dst,Size(5,5));均值濾波
GaussianBlur(src,dst,Size(5,5),11,11);高斯濾波
medianBlur(src,dst,5);中值濾波(應對椒鹽噪聲)
bilateralFilter(src,dst,2,0.5,2,4);雙邊濾波(保留邊緣)
#include<opencv2/opencv.hpp> using namespace cv; int main() { Mat src, dst; src = imread("E:/image/image/daibola.jpg"); CV_Assert(src.depth() == CV_8U); if(!src.data) { printf("can not load image \n"); return -1; } namedWindow("input", CV_WINDOW_AUTOSIZE); imshow("input",src); src.copyTo(dst); //均值濾波 blur(src,dst,Size(5,5)); //中值濾波 //medianBlur(src,dst,5); namedWindow("output", CV_WINDOW_AUTOSIZE); imshow("output",dst); waitKey(); return 0; }
以上這篇opencv3/C++圖像濾波實現方式就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。