您好,登錄后才能下訂單哦!
機器學習
人臉識別
工業上,常用人臉識別技術來識別物體。
基于深度學習的人臉識別系統,一共用到5個開源庫:OpenCV(計算機視覺庫)、Caffe(深度學習庫)、Dlib(機器學習庫)、libfacedetection(人臉檢測庫)、cudnn(gpu加速器)。
用到一個開源的深度學習模型:VGG model。
#include "opencv2/core/core.hpp" #include "opencv2/objdetect/objdetect.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio.h> using namespace std; using namespace cv; string face_cascade_name = "haarcascade_frontalface_alt.xml"; CascadeClassifier face_cascade; string window_name = "人臉識別"; void detectAndDisplay( Mat frame ); int main( int argc, char** argv ){ Mat image; image = imread( argv[1]); if( argc != 2 || !image.data ){ printf("[error] 沒有圖片\n"); return -1; } if( !face_cascade.load( face_cascade_name ) ){ printf("[error] 無法加載級聯分類器文件!\n"); return -1; } detectAndDisplay(image); waitKey(0); } void detectAndDisplay( Mat frame ){ std::vector<Rect> faces; Mat frame_gray; cvtColor( frame, frame_gray, CV_BGR2GRAY ); equalizeHist( frame_gray, frame_gray ); face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) ); for( int i = 0; i < faces.size(); i++ ){ Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 ); ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 ); } imshow( window_name, frame ); }
參考文章:https://www.cnblogs.com/justany/archive/2012/11/22/2781552.html
到此這篇關于淺理解C++ 人臉識別系統的實現的文章就介紹到這了,更多相關C++ 人臉識別內容請搜索億速云以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持億速云!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。