您好,登錄后才能下訂單哦!
小編給大家分享一下golang怎么實現mapreduce單進程,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
1. Mapreduce大體架構
??上圖是論文中mapreduce的大體架構。總的來說Mapreduce的思想就是分治思想:對數據進行分片,然后用mapper進行處理,以key-value形式輸出中間文件;然后用reducer進行對mapper輸出的中間文件進行合并:將key一致的合到一塊,并輸出結果文件;如果有需要,采用Combiner進行最后的合并。
??歸納來說主要分為5部分:用戶程序、Master、Mapper、Reducer、Combiner(上圖未給出)。
用戶程序。用戶程序主要對輸入數據進行分割,制定Mapper、Reducer、Combiner的代碼。
Master:中控系統。控制分發Mapper、Reduer的個數,比如生成m個進程處理Mapper,n個進程處理Reducer。其實對Master來說,Mapper和Reduer都屬于worker,只不過跑的程序不一樣,Mapper跑用戶輸入的map代碼,Reduer跑用戶輸入的reduce代碼。Master還作為管道負責中間路徑傳遞,比如將Mapper生成的中間文件傳遞給Reduer,將Reduer生成的結果文件返回,或者傳遞給Combiner(如果有需要的話)。由于Master是單點,性能瓶頸,所以可以做集群:主備模式或者分布式模式。可以用zookeeper進行選主,用一些消息中間件進行數據同步。Master還可以進行一些策略處理:比如某個Worker執行時間特別長,很有可能卡住了,對分配給該Worker的數據重新分配給別的Worker執行,當然需要對多份數據返回去重處理。
Mapper:負責將輸入數據切成key-value格式。Mapper處理完后,將中間文件的路徑告知Master,Master獲悉后傳遞給Reduer進行后續處理。如果Mapper未處理完,或者已經處理完但是Reduer未讀完其中間輸出文件,分配給該Mapper的輸入將重新被別的Mapper執行。
Reducer: 接受Master發送的Mapper輸出文件的消息,RPC讀取文件并處理,并輸出結果文件。n個Reduer將產生n個輸出文件。
Combiner: 做最后的歸并處理,通常不需要。
??總的來說,架構不復雜。組件間通信用啥都可以,比如RPC、HTTP或者私有協議等。
2. 實現代碼介紹
??該版本代碼實現了單機單進程版本,Mapper、Reducer和Combiner的實現用協程goroutine實現,通信采用channel。代碼寫的比較隨意,沒有解耦合。
功能:統計給定文件中出現的最高頻的10個單詞
輸入:大文件
輸出:最高頻的10個單詞
實現:5個Mapper協程、2個Reducer、1個Combiner。
??為了方便起見,Combiner對最高頻的10個單詞進行堆排序處理,按規范來說應該放在用戶程序處理。
??文件目錄如下,其中bin文件夾下的big_input_file.txt為輸入文件,可以調用generate下的main文件生成,caller文件為入口的用戶程序,master目錄下分別存放master、mapper、reducer、combiner代碼:
. ├── README.md ├── bin │ └── file-store │ └── big_input_file.txt └── src ├── caller │ └── main.go ├── generate │ └── main.go └── master ├── combiner.go ├── mapper.go ├── master.go └── reducer.go 6 directories, 8 files
2.1 caller
??用戶程序,讀入文件并按固定行數進行劃分;然后調用master.Handle進行處理。
package main import ( "os" "path" "path/filepath" "bufio" "strconv" "master" "github.com/vinllen/go-logger/logger" ) const ( LIMIT int = 10000 // the limit line of every file ) func main() { curDir, err := filepath.Abs(filepath.Dir(os.Args[0])) if err != nil { logger.Error("Read path error: ", err.Error()) return } fileDir := path.Join(curDir, "file-store") _ = os.Mkdir(fileDir, os.ModePerm) // 1. read file filename := "big_input_file.txt" inputFile, err := os.Open(path.Join(fileDir, filename)) if err != nil { logger.Error("Read inputFile error: ", err.Error()) return } defer inputFile.Close() // 2. split inputFile into several pieces that every piece hold 100,000 lines filePieceArr := []string{} scanner := bufio.NewScanner(inputFile) piece := 1 Outter: for { outputFilename := "input_piece_" + strconv.Itoa(piece) outputFilePos := path.Join(fileDir, outputFilename) filePieceArr = append(filePieceArr, outputFilePos) outputFile, err := os.Create(outputFilePos) if err != nil { logger.Error("Split inputFile error: ", err.Error()) continue } defer outputFile.Close() for cnt := 0; cnt < LIMIT; cnt++ { if !scanner.Scan() { break Outter } _, err := outputFile.WriteString(scanner.Text() + "\n") if err != nil { logger.Error("Split inputFile writting error: ", err.Error()) return } } piece++ } // 3. pass to master res := master.Handle(filePieceArr, fileDir) logger.Warn(res) }
2.2 master
??Master程序,依次生成Combiner、Reducer、Mapper,處理消息中轉,輸出最后結果。
package master import ( "github.com/vinllen/go-logger/logger" ) var ( MapChanIn chan MapInput // channel produced by master while consumed by mapper MapChanOut chan string // channel produced by mapper while consumed by master ReduceChanIn chan string // channel produced by master while consumed by reducer ReduceChanOut chan string // channel produced by reducer while consumed by master CombineChanIn chan string // channel produced by master while consumed by combiner CombineChanOut chan []Item // channel produced by combiner while consumed by master ) func Handle(inputArr []string, fileDir string) []Item { logger.Info("handle called") const( mapperNumber int = 5 reducerNumber int = 2 ) MapChanIn = make(chan MapInput) MapChanOut = make(chan string) ReduceChanIn = make(chan string) ReduceChanOut = make(chan string) CombineChanIn = make(chan string) CombineChanOut = make(chan []Item) reduceJobNum := len(inputArr) combineJobNum := reducerNumber // start combiner go combiner() // start reducer for i := 1; i <= reducerNumber; i++ { go reducer(i, fileDir) } // start mapper for i := 1; i <= mapperNumber; i++ { go mapper(i, fileDir) } go func() { for i, v := range(inputArr) { MapChanIn <- MapInput{ Filename: v, Nr: i + 1, } // pass job to mapper } close(MapChanIn) // close map input channel when no more job }() var res []Item outter: for { select { case v := <- MapChanOut: go func() { ReduceChanIn <- v reduceJobNum-- if reduceJobNum <= 0 { close(ReduceChanIn) } }() case v := <- ReduceChanOut: go func() { CombineChanIn <- v combineJobNum-- if combineJobNum <= 0 { close(CombineChanIn) } }() case v := <- CombineChanOut: res = v break outter } } close(MapChanOut) close(ReduceChanOut) close(CombineChanOut) return res }
2.3 mapper
??Mapper程序,讀入并按key-value格式生成中間文件,告知Master。
package master import ( "fmt" "path" "os" "bufio" "strconv" "github.com/vinllen/go-logger/logger" ) type MapInput struct { Filename string Nr int } func mapper(nr int, fileDir string) { for { val, ok := <- MapChanIn // val: filename if !ok { // channel close break } inputFilename := val.Filename nr := val.Nr file, err := os.Open(inputFilename) if err != nil { errMsg := fmt.Sprintf("Read file(%s) error in mapper(%d)", inputFilename, nr) logger.Error(errMsg) MapChanOut <- "" continue } mp := make(map[string]int) scanner := bufio.NewScanner(file) scanner.Split(bufio.ScanWords) for scanner.Scan() { str := scanner.Text() //logger.Info(str) mp[str]++ } outputFilename := path.Join(fileDir, "mapper-output-" + strconv.Itoa(nr)) outputFileHandler, err := os.Create(outputFilename) if err != nil { errMsg := fmt.Sprintf("Write file(%s) error in mapper(%d)", outputFilename, nr) logger.Error(errMsg) } else { for k, v := range mp { str := fmt.Sprintf("%s %d\n", k, v) outputFileHandler.WriteString(str) } outputFileHandler.Close() } MapChanOut <- outputFilename } }
2.4 reducer
??Reducer程序,讀入Master傳遞過來的中間文件并歸并。
package master import ( "fmt" "bufio" "os" "strconv" "path" "strings" "github.com/vinllen/go-logger/logger" ) func reducer(nr int, fileDir string) { mp := make(map[string]int) // store the frequence of words // read file and do reduce for { val, ok := <- ReduceChanIn if !ok { break } logger.Debug("reducer called: ", nr) file, err := os.Open(val) if err != nil { errMsg := fmt.Sprintf("Read file(%s) error in reducer", val) logger.Error(errMsg) continue } scanner := bufio.NewScanner(file) for scanner.Scan() { str := scanner.Text() arr := strings.Split(str, " ") if len(arr) != 2 { errMsg := fmt.Sprintf("Read file(%s) error that len of line(%s) != 2(%d) in reducer", val, str, len(arr)) logger.Warn(errMsg) continue } v, err := strconv.Atoi(arr[1]) if err != nil { errMsg := fmt.Sprintf("Read file(%s) error that line(%s) parse error in reduer", val, str) logger.Warn(errMsg) continue } mp[arr[0]] += v } if err := scanner.Err(); err != nil { logger.Error("reducer: reading standard input:", err) } file.Close() } outputFilename := path.Join(fileDir, "reduce-output-" + strconv.Itoa(nr)) outputFileHandler, err := os.Create(outputFilename) if err != nil { errMsg := fmt.Sprintf("Write file(%s) error in reducer(%d)", outputFilename, nr) logger.Error(errMsg) } else { for k, v := range mp { str := fmt.Sprintf("%s %d\n", k, v) outputFileHandler.WriteString(str) } outputFileHandler.Close() } ReduceChanOut <- outputFilename }
2.5 combiner
??Combiner程序,讀入Master傳遞過來的Reducer結果文件并歸并成一個,然后堆排序輸出最高頻的10個詞語。
package master import ( "fmt" "strings" "bufio" "os" "container/heap" "strconv" "github.com/vinllen/go-logger/logger" ) type Item struct { key string val int } type PriorityQueue []*Item func (pq PriorityQueue) Len() int { return len(pq) } func (pq PriorityQueue) Less(i, j int) bool { return pq[i].val > pq[j].val } func (pq PriorityQueue) Swap(i, j int) { pq[i], pq[j] = pq[j], pq[i] } func (pq *PriorityQueue) Push(x interface{}) { item := x.(*Item) *pq = append(*pq, item) } func (pq *PriorityQueue) Pop() interface{} { old := *pq n := len(old) item := old[n - 1] *pq = old[0 : n - 1] return item } func combiner() { mp := make(map[string]int) // store the frequence of words // read file and do combine for { val, ok := <- CombineChanIn if !ok { break } logger.Debug("combiner called") file, err := os.Open(val) if err != nil { errMsg := fmt.Sprintf("Read file(%s) error in combiner", val) logger.Error(errMsg) continue } scanner := bufio.NewScanner(file) for scanner.Scan() { str := scanner.Text() arr := strings.Split(str, " ") if len(arr) != 2 { errMsg := fmt.Sprintf("Read file(%s) error that len of line != 2(%s) in combiner", val, str) logger.Warn(errMsg) continue } v, err := strconv.Atoi(arr[1]) if err != nil { errMsg := fmt.Sprintf("Read file(%s) error that line(%s) parse error in combiner", val, str) logger.Warn(errMsg) continue } mp[arr[0]] += v } file.Close() } // heap sort // pq := make(PriorityQueue, len(mp)) pq := make(PriorityQueue, 0) heap.Init(&pq) for k, v := range mp { node := &Item { key: k, val: v, } // logger.Debug(k, v) heap.Push(&pq, node) } res := []Item{} for i := 0; i < 10 && pq.Len() > 0; i++ { node := heap.Pop(&pq).(*Item) res = append(res, *node) } CombineChanOut <- res }
以上是“golang怎么實現mapreduce單進程”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。