您好,登錄后才能下訂單哦!
現在的許多手寫字體識別代碼都是基于已有的mnist手寫字體數據集進行的,而kaggle需要用到網站上給出的數據集并生成測試集的輸出用于提交。這里選擇keras搭建卷積網絡進行識別,可以直接生成測試集的結果,最終結果識別率大概97%左右的樣子。
# -*- coding: utf-8 -*- """ Created on Tue Jun 6 19:07:10 2017 @author: Administrator """ from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils import os import pandas as pd import numpy as np from tensorflow.examples.tutorials.mnist import input_data from keras import backend as K import tensorflow as tf # 全局變量 batch_size = 100 nb_classes = 10 epochs = 20 # input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling pool_size = (2, 2) # convolution kernel size kernel_size = (3, 3) inputfile='F:/data/kaggle/mnist/train.csv' inputfile2= 'F:/data/kaggle/mnist/test.csv' outputfile= 'F:/data/kaggle/mnist/test_label.csv' pwd = os.getcwd() os.chdir(os.path.dirname(inputfile)) train= pd.read_csv(os.path.basename(inputfile)) #從訓練數據文件讀取數據 os.chdir(pwd) pwd = os.getcwd() os.chdir(os.path.dirname(inputfile)) test= pd.read_csv(os.path.basename(inputfile2)) #從測試數據文件讀取數據 os.chdir(pwd) x_train=train.iloc[:,1:785] #得到特征數據 y_train=train['label'] y_train = np_utils.to_categorical(y_train, 10) mnist=input_data.read_data_sets("MNIST_data/",one_hot=True) #導入數據 x_test=mnist.test.images y_test=mnist.test.labels # 根據不同的backend定下不同的格式 if K.image_dim_ordering() == 'th': x_train=np.array(x_train) test=np.array(test) x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) test = test.reshape(test.shape[0], 1, img_rows, img_cols) else: x_train=np.array(x_train) test=np.array(test) x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) X_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) test = test.reshape(test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = X_test.astype('float32') test = test.astype('float32') x_train /= 255 X_test /= 255 test/=255 print('X_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print(test.shape[0], 'testOuput samples') model=Sequential()#model initial model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]), padding='same', input_shape=input_shape)) # 卷積層1 model.add(Activation('relu')) #激活層 model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]))) #卷積層2 model.add(Activation('relu')) #激活層 model.add(MaxPooling2D(pool_size=pool_size)) #池化層 model.add(Dropout(0.25)) #神經元隨機失活 model.add(Flatten()) #拉成一維數據 model.add(Dense(128)) #全連接層1 model.add(Activation('relu')) #激活層 model.add(Dropout(0.5)) #隨機失活 model.add(Dense(nb_classes)) #全連接層2 model.add(Activation('softmax')) #Softmax評分 #編譯模型 model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) #訓練模型 model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,verbose=1) model.predict(x_test) #評估模型 score = model.evaluate(x_test, y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1]) y_test=model.predict(test) sess=tf.InteractiveSession() y_test=sess.run(tf.arg_max(y_test,1)) y_test=pd.DataFrame(y_test) y_test.to_csv(outputfile)
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。