您好,登錄后才能下訂單哦!
在上一篇文章中,我們已經構建了決策樹,接下來可以使用它用于實際的數據分類。在執行數據分類時,需要決策時以及標簽向量。程序比較測試數據和決策樹上的數值,遞歸執行直到進入葉子節點。
這篇文章主要使用決策樹分類器就行分類,數據集采用UCI數據庫中的紅酒,白酒數據,主要特征包括12個,主要有非揮發性酸,揮發性酸度, 檸檬酸, 殘糖含量,氯化物, 游離二氧化硫, 總二氧化硫,密度, pH,硫酸鹽,酒精, 質量等特征。
下面是具體代碼的實現:
#coding :utf-8 ''' 2017.6.26 author :Erin function: "decesion tree" ID3 ''' import numpy as np import pandas as pd from math import log import operator import random def load_data(): red = [line.strip().split(';') for line in open('e:/a/winequality-red.csv')] white = [line.strip().split(';') for line in open('e:/a/winequality-white.csv')] data=red+white random.shuffle(data) #打亂data x_train=data[:800] x_test=data[800:] features=['fixed','volatile','citric','residual','chlorides','free','total','density','pH','sulphates','alcohol','quality'] return x_train,x_test,features def cal_entropy(dataSet): numEntries = len(dataSet) labelCounts = {} for featVec in dataSet: label = featVec[-1] if label not in labelCounts.keys(): labelCounts[label] = 0 labelCounts[label] += 1 entropy = 0.0 for key in labelCounts.keys(): p_i = float(labelCounts[key]/numEntries) entropy -= p_i * log(p_i,2)#log(x,10)表示以10 為底的對數 return entropy def split_data(data,feature_index,value): ''' 劃分數據集 feature_index:用于劃分特征的列數,例如“年齡” value:劃分后的屬性值:例如“青少年” ''' data_split=[]#劃分后的數據集 for feature in data: if feature[feature_index]==value: reFeature=feature[:feature_index] reFeature.extend(feature[feature_index+1:]) data_split.append(reFeature) return data_split def choose_best_to_split(data): ''' 根據每個特征的信息增益,選擇最大的劃分數據集的索引特征 ''' count_feature=len(data[0])-1#特征個數4 #print(count_feature)#4 entropy=cal_entropy(data)#原數據總的信息熵 #print(entropy)#0.9402859586706309 max_info_gain=0.0#信息增益最大 split_fea_index = -1#信息增益最大,對應的索引號 for i in range(count_feature): feature_list=[fe_index[i] for fe_index in data]#獲取該列所有特征值 ####################################### # print(feature_list) unqval=set(feature_list)#去除重復 Pro_entropy=0.0#特征的熵 for value in unqval:#遍歷改特征下的所有屬性 sub_data=split_data(data,i,value) pro=len(sub_data)/float(len(data)) Pro_entropy+=pro*cal_entropy(sub_data) #print(Pro_entropy) info_gain=entropy-Pro_entropy if(info_gain>max_info_gain): max_info_gain=info_gain split_fea_index=i return split_fea_index ################################################## def most_occur_label(labels): #sorted_label_count[0][0] 次數最多的類標簽 label_count={} for label in labels: if label not in label_count.keys(): label_count[label]=0 else: label_count[label]+=1 sorted_label_count = sorted(label_count.items(),key = operator.itemgetter(1),reverse = True) return sorted_label_count[0][0] def build_decesion_tree(dataSet,featnames): ''' 字典的鍵存放節點信息,分支及葉子節點存放值 ''' featname = featnames[:] ################ classlist = [featvec[-1] for featvec in dataSet] #此節點的分類情況 if classlist.count(classlist[0]) == len(classlist): #全部屬于一類 return classlist[0] if len(dataSet[0]) == 1: #分完了,沒有屬性了 return Vote(classlist) #少數服從多數 # 選擇一個最優特征進行劃分 bestFeat = choose_best_to_split(dataSet) bestFeatname = featname[bestFeat] del(featname[bestFeat]) #防止下標不準 DecisionTree = {bestFeatname:{}} # 創建分支,先找出所有屬性值,即分支數 allvalue = [vec[bestFeat] for vec in dataSet] specvalue = sorted(list(set(allvalue))) #使有一定順序 for v in specvalue: copyfeatname = featname[:] DecisionTree[bestFeatname][v] = build_decesion_tree(split_data(dataSet,bestFeat,v),copyfeatname) return DecisionTree def classify(Tree, featnames, X): classLabel='' root = list(Tree.keys())[0] firstDict = Tree[root] featindex = featnames.index(root) #根節點的屬性下標 #classLabel='0' for key in firstDict.keys(): #根屬性的取值,取哪個就走往哪顆子樹 if X[featindex] == key: if type(firstDict[key]) == type({}): classLabel = classify(firstDict[key],featnames,X) else: classLabel = firstDict[key] return classLabel if __name__ == '__main__': x_train,x_test,features=load_data() split_fea_index=choose_best_to_split(x_train) newtree=build_decesion_tree(x_train,features) #print(newtree) #classLabel=classify(newtree, features, ['7.4','0.66','0','1.8','0.075','13','40','0.9978','3.51','0.56','9.4','5'] ) #print(classLabel) count=0 for test in x_test: label=classify(newtree, features,test) if(label==test[-1]): count=count+1 acucy=float(count/len(x_test)) print(acucy)
測試的準確率大概在0.7左右。至此決策樹分類算法結束。本文代碼地址
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。