91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python中如何使用DataFrame.groupby()聚合函數

發布時間:2021-07-28 14:48:25 來源:億速云 閱讀:378 作者:Leah 欄目:開發技術

今天就跟大家聊聊有關Python中如何使用DataFrame.groupby()聚合函數,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。

pandas提供了一個靈活高效的groupby功能,它使你能以一種自然的方式對數據集進行切片、切塊、摘要等操作。根據一個或多個鍵(可以是函數、數組或DataFrame列名)拆分pandas對象。計算分組摘要統計,如計數、平均值、標準差,或用戶自定義函數。對DataFrame的列應用各種各樣的函數。應用組內轉換或其他運算,如規格化、線性回歸、排名或選取子集等。計算透視表或交叉表。執行分位數分析以及其他分組分析。

groupby分組函數:

  返回值:返回重構格式的DataFrame,特別注意,groupby里面的字段內的數據重構后都會變成索引

  groupby(),一般和sum()、mean()一起使用,如下例:

先自定義生成數組

import pandas as pd
df = pd.DataFrame({'key1':list('ababa'),
  'key2': ['one','two','one','two','one'],
  'data1': np.random.randn(5),
  'data2': np.random.randn(5)})
print(df)

 data1 data2 key1 key2
0 -1.313101 -0.453361 a one
1 0.791463 1.096693 b two
2 0.462611 1.150597 a one
3 -0.216121 1.381333 b two
4 0.077367 -0.282876 a one

應用groupby,分組鍵均為Series(譬如df[‘xx']),實際上分組鍵可以是任何長度適當的數組

#將df['data1']按照分組鍵為df['key1']進行分組
grouped=df['data1'].groupby(df['key1'])
print(grouped.mean())
key1
a -0.257707
b 0.287671
Name: data1, dtype: float64
states=np.array(['Ohio','California','California','Ohio','Ohio'])
years=np.array([2005,2005,2006,2005,2006])
#states第一層索引,years第二層分層索引
print(df['data1'].groupby([states,years]).mean())
California 2005 0.791463
 2006 0.462611
Ohio 2005 -0.764611
 2006 0.077367
Name: data1, dtype: float64
#df根據‘key1'分組,然后對df剩余數值型的數據運算
df.groupby('key1').mean()
 data1 data2
key1  
a -0.257707 0.138120
b 0.287671 1.239013
#可以看出沒有key2列,因為df[‘key2']不是數值數據,所以被從結果中移除。默認情況下,所有數值列都會被聚合,雖然有時可能被過濾為一個子集。

對分組進行迭代

#name就是groupby中的key1的值,group就是要輸出的內容
for name, group in df.groupby('key1'):
 print (name,group)
a data1 data2 key1 key2
0 -1.313101 -0.453361 a one
2 0.462611 1.150597 a one
4 0.077367 -0.282876 a one
b data1 data2 key1 key2
1 0.791463 1.096693 b two
3 -0.216121 1.381333 b two

對group by后的內容進行操作,可轉換成字典

#轉化為字典
piece=dict(list(df.groupby('key1')))
{'a': data1 data2 key1 key2
 0 -1.313101 -0.453361 a one
 2 0.462611 1.150597 a one
 4 0.077367 -0.282876 a one, 'b': data1 data2 key1 key2
 1 0.791463 1.096693 b two
 3 -0.216121 1.381333 b two}
#對字典取值
value = piece['a']

groupby默認是在axis=0上進行分組的,通過設置也可以在其他任何軸上進行分組

grouped=df.groupby(df.dtypes, axis=1)
value = dict(list(grouped))
print(value)
{dtype('float64'): data1 data2
0 -1.313101 -0.453361
1 0.791463 1.096693
2 0.462611 1.150597
3 -0.216121 1.381333
4 0.077367 -0.282876, dtype('O'): key1 key2
0 a one
1 b two
2 a one
3 b two
4 a one}

對于大數據,很多情況是只需要對部分列進行聚合

#對df進行'key1','key2'的兩次分組,然后取data2的數據,對兩次細分的分組數據取均值
value = df.groupby(['key1','key2'])[['data2']].mean()
 data2
key1 key2 
a one 0.138120
b two 1.239013
----------------------------------
df
Out[1]: 
 data1 data2 key1 key2
0 -1.313101 -0.453361 a one
1 0.791463 1.096693 b two
2 0.462611 1.150597 a one
3 -0.216121 1.381333 b two
4 0.077367 -0.282876 a one
----------------------------------
df['key2'].iloc[-1] ='two'
value = df.groupby(['key1','key2'])[['data2']].mean()
value
Out[2]: 
 data2
key1 key2 
a one 0.348618
 two -0.282876
b two 1.239013

Python中的分組函數(groupby、itertools)

from operator import itemgetter #itemgetter用來去dict中的key,省去了使用lambda函數
from itertools import groupby #itertool還包含有其他很多函數,比如將多個list聯合起來。。
d1={'name':'zhangsan','age':20,'country':'China'}
d2={'name':'wangwu','age':19,'country':'USA'}
d3={'name':'lisi','age':22,'country':'JP'}
d4={'name':'zhaoliu','age':22,'country':'USA'}
d5={'name':'pengqi','age':22,'country':'USA'}
d6={'name':'lijiu','age':22,'country':'China'}
lst=[d1,d2,d3,d4,d5,d6]
#通過country進行分組:
lst.sort(key=itemgetter('country')) #需要先排序,然后才能groupby。lst排序后自身被改變
lstg = groupby(lst,itemgetter('country')) 
#lstg = groupby(lst,key=lambda x:x['country']) 等同于使用itemgetter()
for key,group in lstg:
 for g in group: #group是一個迭代器,包含了所有的分組列表
 print key,g
返回:
China {'country': 'China', 'age': 20, 'name': 'zhangsan'}
China {'country': 'China', 'age': 22, 'name': 'lijiu'}
JP {'country': 'JP', 'age': 22, 'name': 'lisi'}
USA {'country': 'USA', 'age': 19, 'name': 'wangwu'}
USA {'country': 'USA', 'age': 22, 'name': 'zhaoliu'}
USA {'country': 'USA', 'age': 22, 'name': 'pengqi'}
print [key for key,group in lstg] #返回:['China', 'JP', 'USA']
print [(key,list(group)) for key,group in lstg]
#返回的list中包含著三個元組:
[('China', [{'country': 'China', 'age': 20, 'name': 'zhangsan'}, {'country': 'China', 'age': 22, 'name': 'lijiu'}]), ('JP', [{'country': 'JP', 'age': 22, 'name': 'lisi'}]), ('USA', [{'country': 'USA', 'age': 19, 'name': 'wangwu'}, {'country': 'USA', 'age': 22, 'name': 'zhaoliu'}, {'country': 'USA', 'age': 22, 'name': 'pengqi'}])]
print dict([(key,list(group)) for key,group in lstg])
#返回的是一個字典:
{'JP': [{'country': 'JP', 'age': 22, 'name': 'lisi'}], 'China': [{'country': 'China', 'age': 20, 'name': 'zhangsan'}, {'country': 'China', 'age': 22, 'name': 'lijiu'}], 'USA': [{'country': 'USA', 'age': 19, 'name': 'wangwu'}, {'country': 'USA', 'age': 22, 'name': 'zhaoliu'}, {'country': 'USA', 'age': 22, 'name': 'pengqi'}]}
print dict([(key,len(list(group))) for key,group in lstg])
#返回每個分組的個數:
{'JP': 1, 'China': 2, 'USA': 3}
#返回包含有2個以上元素的分組
print [key for key,group in groupby(sorted(lst,key=itemgetter('country')),itemgetter('country')) if len(list(group))>=2]
#返回:['China', 'USA']

 

lstg = groupby(sorted(lst,key=itemgetter('country')),key=itemgetter('country')) 
lstgall=[(key,list(group)) for key,group in lstg ]
print dict(filter(lambda x:len(x[1])>2,lstgall)) 
#過濾出分組后的元素個數大于2個的分組,返回:
{'USA': [{'country': 'USA', 'age': 19, 'name': 'wangwu'}, {'country': 'USA', 'age': 22, 'name': 'zhaoliu'}, {'country': 'USA', 'age': 22, 'name': 'pengqi'}]}

自定義分組:

from itertools import groupby
lst=[2,8,11,25,43,6,9,29,51,66]

def gb(num):
 if num <= 10:
 return 'less'
 elif num >=30:
 return 'great'
 else:
 return 'middle'
print [(k,list(g))for k,g in groupby(sorted(lst),key=gb)]
返回:
[('less', [2, 6, 8, 9]), ('middle', [11, 25, 29]), ('great', [43, 51, 66])]

看完上述內容,你們對Python中如何使用DataFrame.groupby()聚合函數有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

四子王旗| 准格尔旗| 搜索| 安陆市| 夏津县| 尼勒克县| 上犹县| 资阳市| 易门县| 天祝| 云和县| 衡阳县| 南岸区| 城市| 赫章县| 绥宁县| 曲沃县| 五家渠市| 黄骅市| 灵山县| 冀州市| 绵阳市| 应用必备| 榆林市| 乌兰浩特市| 平安县| 繁昌县| 商水县| 华宁县| 仲巴县| 辉南县| 肇州县| 邯郸县| 东城区| 中西区| 镇江市| 和龙市| 罗平县| 色达县| 涟源市| 溆浦县|