91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

MLSQL Stack如何讓流調試更加簡單詳解

發布時間:2020-10-07 21:23:43 來源:腳本之家 閱讀:160 作者:祝威廉 欄目:MySQL數據庫

前言

有一位同學正在調研MLSQL Stack對流的支持。然后說了流調試其實挺困難的。經過實踐,希望實現如下三點:

  • 能隨時查看最新固定條數的Kafka數據
  • 調試結果(sink)能打印在web控制臺
  • 流程序能自動推測json schema(現在spark是不行的)

實現這三個點之后,我發現調試確實就變得簡單很多了。

流程

首先我新建了一個kaf_write.mlsql,里面方便我往Kafka里寫數據:

set abc='''
{ "x": 100, "y": 200, "z": 200 ,"dataType":"A group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
{ "x": 120, "y": 100, "z": 260 ,"dataType":"B group"}
''';
load jsonStr.`abc` as table1;

select to_json(struct(*)) as value from table1 as table2;
save append table2 as kafka.`wow` where 
kafka.bootstrap.servers="127.0.0.1:9092";

這樣我每次運行,數據就能寫入到Kafka.

接著,我寫完后,需要看看數據是不是真的都寫進去了,寫成了什么樣子:

!kafkaTool sampleData 10 records from "127.0.0.1:9092" wow;

這句話表示,我要采樣Kafka 10條Kafka數據,該Kafka的地址為127.0.0.1:9092,主題為wow.運行結果如下:

MLSQL Stack如何讓流調試更加簡單詳解

沒有什么問題。接著我寫一個非常簡單的流式程序:

-- the stream name, should be uniq.
set streamName="streamExample";

-- use kafkaTool to infer schema from kafka
!kafkaTool registerSchema 2 records from "127.0.0.1:9092" wow;


load kafka.`wow` options 
kafka.bootstrap.servers="127.0.0.1:9092"
as newkafkatable1;


select * from newkafkatable1
as table21;


-- print in webConsole instead of terminal console.
save append table21 
as webConsole.`` 
options mode="Append"
and duration="15"
and checkpointLocation="/tmp/s-cpl4";

運行結果如下:

MLSQL Stack如何讓流調試更加簡單詳解

在終端我們也可以看到實時效果了。

補充

當然,MLSQL Stack 還有對流還有兩個特別好地方,第一個是你可以對流的事件設置http協議的callback,以及對流的處理結果再使用批SQL進行處理,最后入庫。參看如下腳本:

-- the stream name, should be uniq.
set streamName="streamExample";


-- mock some data.
set data='''
{"key":"yes","value":"no","topic":"test","partition":0,"offset":0,"timestamp":"2008-01-24 18:01:01.001","timestampType":0}
{"key":"yes","value":"no","topic":"test","partition":0,"offset":1,"timestamp":"2008-01-24 18:01:01.002","timestampType":0}
{"key":"yes","value":"no","topic":"test","partition":0,"offset":2,"timestamp":"2008-01-24 18:01:01.003","timestampType":0}
{"key":"yes","value":"no","topic":"test","partition":0,"offset":3,"timestamp":"2008-01-24 18:01:01.003","timestampType":0}
{"key":"yes","value":"no","topic":"test","partition":0,"offset":4,"timestamp":"2008-01-24 18:01:01.003","timestampType":0}
{"key":"yes","value":"no","topic":"test","partition":0,"offset":5,"timestamp":"2008-01-24 18:01:01.003","timestampType":0}
''';

-- load data as table
load jsonStr.`data` as datasource;

-- convert table as stream source
load mockStream.`datasource` options 
stepSizeRange="0-3"
as newkafkatable1;

-- aggregation 
select cast(value as string) as k from newkafkatable1
as table21;


!callback post "http://127.0.0.1:9002/api_v1/test" when "started,progress,terminated";
-- output the the result to console.


save append table21 
as custom.`` 
options mode="append"
and duration="15"
and sourceTable="jack"
and code='''
select count(*) as c from jack as newjack;
save append newjack as parquet.`/tmp/jack`; 
'''
and checkpointLocation="/tmp/cpl15";

總結

以上就是這篇文章的全部內容了,希望本文的內容對大家的學習或者工作具有一定的參考學習價值,謝謝大家對億速云的支持。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

阿拉善盟| 凤台县| 鄂尔多斯市| 深圳市| 乐业县| 恩平市| 万年县| 长海县| 米易县| 繁昌县| 旌德县| 麻阳| 天全县| 当涂县| 石河子市| 宣恩县| 东城区| 兰坪| 靖宇县| 安陆市| 南皮县| 仙居县| 竹山县| 永德县| 三穗县| 靖边县| 黔江区| 都兰县| 大姚县| 腾冲县| 临湘市| 乌拉特前旗| 吕梁市| 肃宁县| 西平县| 延寿县| 沙雅县| 福安市| 石屏县| 新巴尔虎左旗| 长治市|