您好,登錄后才能下訂單哦!
1.場景,對于colums都相同的dataframe做過濾的時候
例如:
df1 = DataFrame([['a', 10, '男'], ['b', 11, '男'], ['c', 11, '女'], ['a', 10, '女'], ['c', 11, '男']], columns=['name', 'age', 'sex']) df2 = DataFrame([['a', 10, '男'], ['b', 11, '女']], columns=['name', 'age', 'sex'])
取交集:print(pd.merge(df1,df2,on=['name', 'age', 'sex']))
取并集:print(pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer'))
取差集(從df1中過濾df1在df2中存在的行):
df1 = df1.append(df2) df1 = df1.append(df2) df1 = df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False) print(df1)
代碼:
# -*- coding:utf-8 -*- __version__ = '1.0.0.0' """ @brief : 簡介 @details: 詳細信息 @author : zhphuang @date : 2018-10-29 """ import pandas as pd from pandas import * df1 = DataFrame([['a', 10, '男'], ['b', 11, '男'], ['c', 11, '女'], ['a', 10, '女'], ['c', 11, '男']], columns=['name', 'age', 'sex']) print("df1:\n%s\n\n" % df1) df2 = DataFrame([['a', 10, '男'], ['b', 11, '女']], columns=['name', 'age', 'sex']) print("df2:\n%s\n\n" % df2) # 取交集 print("交集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex'])) # 取并集 print("并集:\n%s\n\n" % pd.merge(df1,df2,on=['name', 'age', 'sex'], how='outer')) # 從df1中過濾df1在df2中存在的行,也就是取補集 df1 = df1.append(df2) df1 = df1.append(df2) print("補集(從df1中過濾df1在df2中存在的行):\n%s\n\n" % df1.drop_duplicates(subset=['name', 'age', 'sex'],keep=False))
截圖
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。