您好,登錄后才能下訂單哦!
本文章向大家介紹如何在python中利用opencv識別圖片中的圓形,主要包括如何在python中利用opencv識別圖片中的圓形的使用實例、應用技巧、基本知識點總結和需要注意事項,具有一定的參考價值,需要的朋友可以參考一下。
Python是一種跨平臺的、具有解釋性、編譯性、互動性和面向對象的腳本語言,其最初的設計是用于編寫自動化腳本,隨著版本的不斷更新和新功能的添加,常用于用于開發獨立的項目和大型項目。
在圖片中識別足球
dp,用來檢測圓心的累加器圖像的分辨率于輸入圖像之比的倒數,且此參數允許創建一個比輸入圖像分辨率低的累加器。上述文字不好理解的話,來看例子吧。例如,如果dp= 1時,累加器和輸入圖像具有相同的分辨率。如果dp=2,累加器便有輸入圖像一半那么大的寬度和高度。
minDist,為霍夫變換檢測到的圓的圓心之間的最小距離,即讓我們的算法能明顯區分的兩個不同圓之間的最小距離。這個參數如果太小的話,多個相鄰的圓可能被錯誤地檢測成了一個重合的圓。反之,這個參數設置太大的話,某些圓就不能被檢測出來了。
param1,有默認值100。它是method設置的檢測方法的對應的參數。對當前唯一的方法霍夫梯度法,它表示傳遞給canny邊緣檢測算子的高閾值,而低閾值為高閾值的一半。
param2,也有默認值100。它是method設置的檢測方法的對應的參數。對當前唯一的方法霍夫梯度法,它表示在檢測階段圓心的累加器閾值。它越小的話,就可以檢測到更多根本不存在的圓,而它越大的話,能通過檢測的圓就更加接近完美的圓形了。
minRadius,默認值0,表示圓半徑的最小值。
maxRadius,也有默認值0,表示圓半徑的最大值。
源代碼:
# -*- coding: utf-8 -*- """ Created on Tue Sep 26 23:15:39 2017 @author: tina """ import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('C:\\Users\\tina\\Pictures\\ahh\\ball.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) plt.subplot(121),plt.imshow(gray,'gray') plt.xticks([]),plt.yticks([]) circles1 = cv2.HoughCircles(gray,cv2.HOUGH_GRADIENT,1, 600,param1=100,param2=30,minRadius=80,maxRadius=97) circles = circles1[0,:,:] circles = np.uint16(np.around(circles)) for i in circles[:]: cv2.circle(img,(i[0],i[1]),i[2],(255,0,0),5) cv2.circle(img,(i[0],i[1]),2,(255,0,255),10) cv2.rectangle(img,(i[0]-i[2],i[1]+i[2]),(i[0]+i[2],i[1]-i[2]),(255,255,0),5) print("圓心坐標",i[0],i[1]) plt.subplot(122),plt.imshow(img) plt.xticks([]),plt.yticks([])
到此這篇關于如何在python中利用opencv識別圖片中的圓形的文章就介紹到這了,更多相關的內容請搜索億速云以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持億速云!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。