您好,登錄后才能下訂單哦!
pd.DataFrame中通常含有許多特征,有時候需要對每個含有缺失值的列,都用均值進行填充,代碼實現可以這樣:
for column in list(df.columns[df.isnull().sum() > 0]): mean_val = df[column].mean() df[column].fillna(mean_val, inplace=True) # -------代碼分解------- # 判斷哪些列有缺失值,得到series對象 df.isnull().sum() > 0 # output contributors True coordinates True created_at False display_text_range False entities False extended_entities True favorite_count False favorited False full_text False geo True id False id_str False ... # 根據上一步結果,篩選需要填充的列 df.columns[df.isnull().sum() > 0] # output Index(['contributors', 'coordinates', 'extended_entities', 'geo', 'in_reply_to_screen_name', 'in_reply_to_status_id', 'in_reply_to_status_id_str', 'in_reply_to_user_id', 'in_reply_to_user_id_str', 'place', 'possibly_sensitive', 'possibly_sensitive_appealable', 'quoted_status', 'quoted_status_id', 'quoted_status_id_str', 'retweeted_status'], dtype='object')
以上這篇pandas 使用均值填充缺失值列的小技巧分享就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。