您好,登錄后才能下訂單哦!
早期寫的python障礙式期權的定價腳本,供大家參考,具體內容如下
#coding:utf-8 ''' 障礙期權 q=x/s H = h/x H 障礙價格 [1] Down-and-in call cdi [2] Up-and-in call cui [3] Down-and-in put pdi [4] Up-and-in put pui [5] Down-and-out call cdo [6] Up-and-out call cuo [7] Down-and-out put pdo [8] Up-and-out put puo ''' from math import log,sqrt,exp,ceil from scipy import stats import datetime import tushare as ts import pandas as pd import numpy as np import random import time as timess import os def get_codes(path='D:\\code\\20180313.xlsx'): #從代碼表格從獲取代碼 codes = pd.read_excel(path) codes = codes.iloc[:,1] return codes def get_datas(code,N=1,path='D:\\data\\'): #獲取數據N=1當天數據 datas = pd.read_csv(path+eval(code)+'.csv',encoding='gbk',skiprows=2,header=None,skipfooter=N,engine='python').dropna() #讀取CSV文件 名稱為股票代碼 解gbk skiprows跳過前兩行文字 第一行不做為表頭 date_c = datas.iloc[:,[0,4,5]] #只用第0 列代碼數據和第4列收盤價數據 date_c.index = datas[0] return date_c def get_sigma(close,std_th): x_i = np.log(close/close.shift(1)).dropna() sigma = x_i.rolling(window=std_th).std().dropna()*sqrt(244) return sigma def get_mu(sigma,r): mu = (r-pow(sigma,2)/2)/pow(sigma,2) return mu def get_lambda(mu,r,sigma): lam = sqrt(mu*mu+2*r/pow(sigma,2)) return lam def x_y(sigma,T,mu,H,lam,q=1): x1 = log(1/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T) x2 = log(1/(q*H))/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T) y1 = log(H*H/q)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T) y2 = log(q*H)/(sigma*sqrt(T))+(1+mu)*sigma*sqrt(T) z = log(q*H)/(sigma*sqrt(T))+lam*sigma*sqrt(T) return x1,x2,y1,y2,z def get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z,q=1): f1 = phi*1*stats.norm.cdf(phi*x1,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x1-phi*sigma*sqrt(T),0.0,1.0) f2 = phi*1*stats.norm.cdf(phi*x2,0.0,1.0)-phi*q*exp(-r*T)*stats.norm.cdf(phi*x2-phi*sigma*sqrt(T),0.0,1.0) f3 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y1,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y1-eta*sigma*sqrt(T),0.0,1.0) f4 = phi*1*pow(H*q,2*(mu+1))*stats.norm.cdf(eta*y2,0.0,1.0)-phi*q*exp(-r*T)*pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0) f5 = (H-1)*exp(-r*T)*(stats.norm.cdf(eta*x2-eta*sigma*sqrt(T),0.0,1.0)-pow(H*q,2*mu)*stats.norm.cdf(eta*y2-eta*sigma*sqrt(T),0.0,1.0)) f6 = (H-1)*(pow(H*q,(mu+lam))*stats.norm.cdf(eta*z,0.0,1.0)+pow(H*q,(mu-lam))*stats.norm.cdf(eta*z-2*eta*lam*sigma*sqrt(T),0.0,1.0)) return f1,f2,f3,f4,f5,f6 def main(param,t,r=0.065): typeflag = ['cdi','cdo','cui','cuo','pdi','pdo','pui','puo'] r = log(1+r) T = t/365 codes = get_codes() H = 1.2 for i in range(len(codes)): sdbs = [] for j in typeflag: code = codes.iloc[i] datas = get_datas(code) close = datas[4] sigma = get_sigma(close,40)[-1] mu = get_mu(sigma,r) lam = get_lambda(mu,r,sigma) x1,x2,y1,y2,z = x_y(sigma,T,mu,H,lam) eta = param[j]['eta'] phi = param[j]['phi'] f1,f2,f3,f4,f5,f6 = get_standardBarrier(eta,phi,mu,sigma,r,T,H,lam,x1,x2,y1,y2,z) if j=='cdi': sdb = f1-f2+f4+f5 if j=='cui': sdb = f2-f3+f4+f5 if j=='pdi': sdb = f1+f5 if j=='pui': sdb = f3+f5 if j=='cdo': sdb = f2+f6-f4 if j=='cuo': sdb = f1-f2+f3-f4+f6 if j=='pdo': sdb = f6 if j=='puo': sdb = f1-f3+f6 sdbs.append(sdb) print(T,r,sigma,H,sdbs) if __name__ == '__main__': param = {'cdi':{'eta':1,'phi':1},'cdo':{'eta':1,'phi':1},'cui':{'eta':-1,'phi':1},'cuo':{'eta':-1,'phi':1}, 'pdi':{'eta':1,'phi':-1},'pdo':{'eta':1,'phi':-1},'pui':{'eta':-1,'phi':-1},'puo':{'eta':-1,'phi':-1}} t = 30 main(param,t)
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。