您好,登錄后才能下訂單哦!
這篇文章主要介紹了python怎么通過robert、sobel、Laplace算子實現圖像邊緣提取,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
實現思路:
1,將傳進來的圖片矩陣用算子進行卷積求和(卷積和取絕對值)
2,用新的矩陣(與原圖一樣大小)去接收每次的卷積和的值
3,卷積圖片所有的像素點后,把新的矩陣數據類型轉化為uint8
注意:
必須對求得的卷積和的值求絕對值;矩陣數據類型進行轉化。
完整代碼:
import cv2 import numpy as np # robert 算子[[-1,-1],[1,1]] def robert_suanzi(img): r, c = img.shape r_sunnzi = [[-1,-1],[1,1]] for x in range(r): for y in range(c): if (y + 2 <= c) and (x + 2 <= r): imgChild = img[x:x+2, y:y+2] list_robert = r_sunnzi*imgChild img[x, y] = abs(list_robert.sum()) # 求和加絕對值 return img # # sobel算子的實現 def sobel_suanzi(img): r, c = img.shape new_image = np.zeros((r, c)) new_imageX = np.zeros(img.shape) new_imageY = np.zeros(img.shape) s_suanziX = np.array([[-1,0,1],[-2,0,2],[-1,0,1]]) # X方向 s_suanziY = np.array([[-1,-2,-1],[0,0,0],[1,2,1]]) for i in range(r-2): for j in range(c-2): new_imageX[i+1, j+1] = abs(np.sum(img[i:i+3, j:j+3] * s_suanziX)) new_imageY[i+1, j+1] = abs(np.sum(img[i:i+3, j:j+3] * s_suanziY)) new_image[i+1, j+1] = (new_imageX[i+1, j+1]*new_imageX[i+1,j+1] + new_imageY[i+1, j+1]*new_imageY[i+1,j+1])**0.5 # return np.uint8(new_imageX) # return np.uint8(new_imageY) return np.uint8(new_image) # 無方向算子處理的圖像 # Laplace算子 # 常用的Laplace算子模板 [[0,1,0],[1,-4,1],[0,1,0]] [[1,1,1],[1,-8,1],[1,1,1]] def Laplace_suanzi(img): r, c = img.shape new_image = np.zeros((r, c)) L_sunnzi = np.array([[0,-1,0],[-1,4,-1],[0,-1,0]]) # L_sunnzi = np.array([[1,1,1],[1,-8,1],[1,1,1]]) for i in range(r-2): for j in range(c-2): new_image[i+1, j+1] = abs(np.sum(img[i:i+3, j:j+3] * L_sunnzi)) return np.uint8(new_image) img = cv2.imread('1.jpg', cv2.IMREAD_GRAYSCALE) cv2.imshow('image', img) # # robers算子 out_robert = robert_suanzi(img) cv2.imshow('out_robert_image', out_robert) # sobel 算子 out_sobel = sobel_suanzi(img) cv2.imshow('out_sobel_image', out_sobel) # Laplace算子 out_laplace = Laplace_suanzi(img) cv2.imshow('out_laplace_image', out_laplace) cv2.waitKey(0) cv2.destroyAllWindows()
結果:
感謝你能夠認真閱讀完這篇文章,希望小編分享的“python怎么通過robert、sobel、Laplace算子實現圖像邊緣提取”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。