您好,登錄后才能下訂單哦!
這篇文章主要介紹如何創建numpy矩陣,文中介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們一定要看完!
Numpy是python常用的一個類庫,在python的使用中及其常見,廣泛用在矩陣的計算中,numpy對矩陣的操作與純python比起來速度有極大的差距。
一、 構造矩陣
矩陣的構造可以有多種方法:
1.使用python中的方法構造矩陣
- 生成一維矩陣
# 使用python自帶的range()方法生成一個矩陣 a = list(range(100))#range()產生從0-99的一個列表 print(a)
- 生成二維及多維矩陣
# 使用python自帶的range()方法生成一個矩陣 a = list([[1,2,3], [4,5,6], [7,8,9]]) print(a)
2.使用numpy中的方法來生成矩陣
numpy類庫中生成的矩陣的數據類型為numpy.ndarray,與python中的列表不同。
(1)array()方法生成矩陣
#numpy入門 import numpy as np data = [6,7.5,8,0,1] data1 = [[1,2,3],[4,5,6]] arr = np.array(data) arr1 = np.array(data1) print(arr) print(arr1)
array()方法可以將一個列表轉換為對應維度相同的numpy矩陣。
(2)生成隨機矩陣方法rand()和randn()
import numpy as np #生成一個隨機數矩陣 data = np.random.randn(2,3)#是從標準正態分布中返回一個或多個樣本值 data1 = np.random.rand(2,3)#隨機樣本位于[0, 1)中 print(data) print(data1)
(3)矩陣的加法與乘法,numpy矩陣中矩陣與數字相加或相乘,則數組中每一個元素都執行相加或相乘。
import numpy as np data = np.random.randn(10)#是從標準正態分布中返回一個或多個樣本值 print(data) print("data * 10 :\n",data*10)#每一個元素乘以十 print("data+data:\n",data+data)#實現數組中每一個位置自加操作
(4)零矩陣
可以用numpy的zeros()方法生成元素值全為0的矩陣。
import numpy as np data = np.zeros(10)#生成一個一維的全零矩陣,矩陣的元素為十個 print("data:",data) data1 = np.zeros((3,4))#生成一個三行四列的全零矩陣 print("data1:",data1) data2 = np.zeros((3,4,3)) print("data2:",data2)#生成一個三維的全零矩陣
(5)一矩陣
同零矩陣一樣,numpy中的ones()方法可以生產元素值全為一的矩陣
import numpy as np data = np.ones(10)#生成一個一維的全零矩陣,矩陣的元素為十個 print("data:",data) data1 = np.ones((3,4))#生成一個三行四列的全零矩陣 print("data1:",data1) data2 = np.ones((3,4,3)) print("data2:",data2)
(6)empty()方法
python中也可以使用numpy.empty()方法來生產一些看似是0的數,語法和ones()方法一樣
#numpy入門 import numpy as np data = np.empty(10)#生成一個一維的全零矩陣,矩陣的元素為十個 print("data:",data) data1 = np.empty((3,4))#生成一個三行四列的全零矩陣 print("data1:",data1) data2 = np.empty((3,4,3)) print("data2:",data2)
就算是在編譯器中顯示的值為0,但其實際的值并不是0,只是一個很靠近0的數。
#numpy入門 import numpy as np data1 = np.empty((3,4))#生成一個三行四列的全零矩陣 print("data1:\n",data1) print("1/data1:\n",1/data1)
inf表示無窮大的意思,如若data1中數據的值為0的話,在運行的過程中解釋器會出錯。
#注意:認為np.empty會返回全0數組的想法是不安全的。很多情況下(如前所示),它返回的都是一些未初始化的垃圾值。
(7)arange()方法
類似于range()方法
import numpy as np a = np.arange(10) b = np.arange(2,20) c = np.arange(0,50,5) print("a:",a) print("b:",b) print("c:",c)
當只有一個參數n時表示產生一個從[0–n)的不包含n的一個矩陣
當有兩個參數m,n時表示產生一個從[m,n)的不包含n的一個矩陣
當含有三個參數m,n,l時,表示從m開始,每次已l為步長,產生一個矩陣,最大值不超過n
(8)reshape()方法,重新生成矩陣的維度大小
import numpy as np a = np.arange(10) print(a) a=a.reshape(2,5) print(b)
上例中,將一個一維的十元素矩陣轉換成一個兩行五列的矩陣。
注意:使用reshape()方法從一維轉多維時,一維矩陣的元素個數必須與多維矩陣的相同,也即是上例中的10=2*5,如若不相等的話解釋器或出現錯誤。
(9)一些與矩陣的大小有關的值
import numpy as np array = np.array([[1,2,3], [4,5,6], [7,8,9]]) print(array) print(array.ndim)#維度 print(array.shape)#各維度的值 print(array.size)#元素個數 print(array.dtype)#元素的數據類型
以上是“如何創建numpy矩陣”這篇文章的所有內容,感謝各位的閱讀!希望分享的內容對大家有幫助,更多相關知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。