您好,登錄后才能下訂單哦!
Python實現連續數據的離散化處理主要基于兩個函數,pandas.cut和pandas.qcut,前者根據指定分界點對連續數據進行分箱處理,后者則可以根據指定箱子的數量對連續數據進行等寬分箱處理,所謂等寬指的是每個箱子中的數據量是相同的。
下面簡單介紹一下這兩個函數的用法:
# 導入pandas包 import pandas as pd ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32] # 待分箱數據 bins = [18, 25, 35, 60, 100] # 指定箱子的分界點
pandas.cut函數 :
cats1 = pd.cut(ages, bins) cats1
cats1結果:
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35, 60], (35, 60], (25, 35]] Length: 12 Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]] # labels參數為False時,返回結果中用不同的整數作為箱子的指示符 cats2 = pd.cut(ages, bins,labels=False) cats2 # 輸出結果中的數字對應著不同的箱子
cats2結果:
array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int64) pd.value_counts(cats1) # 對不同箱子中的數進行計數
計數結果:
(18, 25] 5 (35, 60] 3 (25, 35] 3 (60, 100] 1 dtype: int64 pd.cut(ages, [18, 26, 36, 61, 100], right=False) # 指定分箱區間是左閉右開
改變區間開閉結果:
[[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36, 61), [36, 61), [26, 36)] Length: 12 Categories (4, interval[int64]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)] # 可以將想要指定給不同箱子的標簽傳遞給labels參數 group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior'] cuts3 = pd.cut(ages, bins, labels=group_names) cuts3
cats3結果:
[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, MiddleAged, YoungAdult] Length: 12 Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]
pandas.qcut函數:
qcats1 = pd.qcut(ages,q=4) # 參數q指定所分箱子的數量 qcats1
qcats1結果:
[(19.999, 22.75], (19.999, 22.75], (22.75, 29.0], (22.75, 29.0], (19.999, 22.75], ..., (29.0, 38.0], (38.0, 61.0], (38.0, 61.0], (38.0, 61.0], (29.0, 38.0]] Length: 12 Categories (4, interval[float64]): [(19.999, 22.75] < (22.75, 29.0] < (29.0, 38.0] < (38.0, 61.0]] qcats1.value_counts() # 從輸出結果可以看到每個箱子中的數據量時相同的
計數結果:
(19.999, 22.75] 3 (22.75, 29.0] 3 (29.0, 38.0] 3 (38.0, 61.0] 3 dtype: int64
參考:《利用Python進行數據分析》——Wes McKinney 第二版
以上這篇使用pandas實現連續數據的離散化處理方式(分箱操作)就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。