91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python實現連續變量最優分箱詳解--CART算法

發布時間:2020-10-24 00:38:21 來源:腳本之家 閱讀:232 作者:賈杰森 欄目:開發技術

關于變量分箱主要分為兩大類:有監督型和無監督型

對應的分箱方法:

A. 無監督:(1) 等寬 (2) 等頻 (3) 聚類

B. 有監督:(1) 卡方分箱法(ChiMerge) (2) ID3、C4.5、CART等單變量決策樹算法 (3) 信用評分建模的IV最大化分箱 等

本篇使用python,基于CART算法對連續變量進行最優分箱

由于CART是決策樹分類算法,所以相當于是單變量決策樹分類。

簡單介紹下理論:

CART是二叉樹,每次僅進行二元分類,對于連續性變量,方法是依次計算相鄰兩元素值的中位數,將數據集一分為二,計算該點作為切割點時的基尼值較分割前的基尼值下降程度,每次切分時,選擇基尼下降程度最大的點為最優切分點,再將切分后的數據集按同樣原則切分,直至終止條件為止。

關于CART分類的終止條件:視實際情況而定,我的案例設置為 a.每個葉子節點的樣本量>=總樣本量的5% b.內部節點再劃分所需的最小樣本數>=總樣本量的10%

python代碼實現:

import pandas as pd
import numpy as np
 
#讀取數據集,至少包含變量和target兩列
sample_set = pd.read_excel('/數據樣本.xlsx')
 
def calc_score_median(sample_set, var):
  '''
  計算相鄰評分的中位數,以便進行決策樹二元切分
  param sample_set: 待切分樣本
  param var: 分割變量名稱
  '''
  var_list = list(np.unique(sample_set[var]))
  var_median_list = []
  for i in range(len(var_list) -1):
    var_median = (var_list[i] + var_list[i+1]) / 2
    var_median_list.append(var_median)
  return var_median_list

var表示需要進行分箱的變量名,返回一個樣本變量中位數的list

def choose_best_split(sample_set, var, min_sample):
  '''
  使用CART分類決策樹選擇最好的樣本切分點
  返回切分點
  param sample_set: 待切分樣本
  param var: 分割變量名稱
  param min_sample: 待切分樣本的最小樣本量(限制條件)
  '''
  # 根據樣本評分計算相鄰不同分數的中間值
  score_median_list = calc_score_median(sample_set, var)
  median_len = len(score_median_list)
  sample_cnt = sample_set.shape[0]
  sample1_cnt = sum(sample_set['target'])
  sample0_cnt = sample_cnt- sample1_cnt
  Gini = 1 - np.square(sample1_cnt / sample_cnt) - np.square(sample0_cnt / sample_cnt)
  
  bestGini = 0.0; bestSplit_point = 0.0; bestSplit_position = 0.0
  for i in range(median_len):
    left = sample_set[sample_set[var] < score_median_list[i]]
    right = sample_set[sample_set[var] > score_median_list[i]]
    
    left_cnt = left.shape[0]; right_cnt = right.shape[0]
    left1_cnt = sum(left['target']); right1_cnt = sum(right['target'])
    left0_cnt = left_cnt - left1_cnt; right0_cnt = right_cnt - right1_cnt
    left_ratio = left_cnt / sample_cnt; right_ratio = right_cnt / sample_cnt
    
    if left_cnt < min_sample or right_cnt < min_sample:
      continue
    
    Gini_left = 1 - np.square(left1_cnt / left_cnt) - np.square(left0_cnt / left_cnt)
    Gini_right = 1 - np.square(right1_cnt / right_cnt) - np.square(right0_cnt / right_cnt)
    Gini_temp = Gini - (left_ratio * Gini_left + right_ratio * Gini_right)
    if Gini_temp > bestGini:
      bestGini = Gini_temp; bestSplit_point = score_median_list[i]
      if median_len > 1:
        bestSplit_position = i / (median_len - 1)
      else:
        bestSplit_position = i / median_len
    else:
      continue
        
  Gini = Gini - bestGini
  return bestSplit_point, bestSplit_position

min_sample 參數為最小葉子節點的樣本閾值,如果小于該閾值則不進行切分,如前面所述設置為整體樣本量的5%

返回的結果我這里只返回了最優分割點,如果需要返回其他的比如GINI值,可以自行添加。

def bining_data_split(sample_set, var, min_sample, split_list):
  '''
  劃分數據找到最優分割點list
  param sample_set: 待切分樣本
  param var: 分割變量名稱
  param min_sample: 待切分樣本的最小樣本量(限制條件)
  param split_list: 最優分割點list
  '''
  split, position = choose_best_split(sample_set, var, min_sample)
  if split != 0.0:
    split_list.append(split)
  # 根據分割點劃分數據集,繼續進行劃分
  sample_set_left = sample_set[sample_set[var] < split]
  sample_set_right = sample_set[sample_set[var] > split]
  # 如果左子樹樣本量超過2倍最小樣本量,且分割點不是第一個分割點,則切分左子樹
  if len(sample_set_left) >= min_sample * 2 and position not in [0.0, 1.0]:
    bining_data_split(sample_set_left, var, min_sample, split_list)
  else:
    None
  # 如果右子樹樣本量超過2倍最小樣本量,且分割點不是最后一個分割點,則切分右子樹
  if len(sample_set_right) >= min_sample * 2 and position not in [0.0, 1.0]:
    bining_data_split(sample_set_right, var, min_sample, split_list)
  else:
    None

split_list 參數是用來保存返回的切分點,每次切分后返回的切分點存入該list

在這里判斷切分點分割的左子樹和右子樹是否滿足“內部節點再劃分所需的最小樣本數>=總樣本量的10%”的條件,如果滿足則進行遞歸調用。

def get_bestsplit_list(sample_set, var):
  '''
  根據分箱得到最優分割點list
  param sample_set: 待切分樣本
  param var: 分割變量名稱
  '''
  # 計算最小樣本閾值(終止條件)
  min_df = sample_set.shape[0] * 0.05
  split_list = []
  # 計算第一個和最后一個分割點
  bining_data_split(sample_set, var, min_df, split_list)
  return split_list

最后整合以下來個函數調用,返回一個分割點list。

可以使用sklearn庫的決策樹測試一下單變量分類對結果進行驗證,在分類方法相同,剪枝條件一致的情況下結果是一致的。

以上這篇python實現連續變量最優分箱詳解--CART算法就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

海口市| 重庆市| 民乐县| 云龙县| 赤峰市| 察隅县| 江北区| 安福县| 延长县| 建德市| 罗平县| 舒城县| 宜良县| 东山县| 苍山县| 张掖市| 澎湖县| 报价| 新蔡县| 松桃| 循化| 德保县| 肃北| 广平县| 临猗县| 福州市| 新津县| 宁波市| 南投市| 奎屯市| 连云港市| 正蓝旗| 蒲城县| 武穴市| 曲松县| 本溪市| 麻江县| 都昌县| 贵港市| 博野县| 博兴县|