您好,登錄后才能下訂單哦!
怎么在python中使用optimize?相信很多沒有經驗的人對此束手無策,為此本文總結了問題出現的原因和解決方法,通過這篇文章希望你能解決這個問題。
1、簡單易用,與C/C++、Java、C# 等傳統語言相比,Python對代碼格式的要求沒有那么嚴格;2、Python屬于開源的,所有人都可以看到源代碼,并且可以被移植在許多平臺上使用;3、Python面向對象,能夠支持面向過程編程,也支持面向對象編程;4、Python是一種解釋性語言,Python寫的程序不需要編譯成二進制代碼,可以直接從源代碼運行程序;5、Python功能強大,擁有的模塊眾多,基本能夠實現所有的常見功能。
非線性方程組求解
SciPy中對非線性方程組求解是fslove()函數,它的調用形式一般為fslove(fun, x0),fun是計算非線性方程組的誤差函數,它需要一個參數x,fun依靠x來計算線性方程組的每個方程的值(或者叫誤差),x0是x的一個初始值。
""" 計算非線性方程組: 5x1+3 = 0 4x0^2-2sin(x1x2)=0 x1x2-1.5=0 """ ## 誤差函數 def fun(x): x0,x1,x2 = x.tolist() return[5*x1+3,4x0^2-2sin(x1x2),x1x2-1.5] result = optimize.fsolve(fun,[1,1,1]) ## result [-0.70622057 -0.6 -2.5]
在計算非線性方程中的解時,比如像坐標上升算法,其中需要用到未知數的導數,同樣,scipy的fslove()也提供了fprime參數傳遞未知數的雅各比矩陣從而加速計算,傳遞的雅各比矩陣每一行時某一方程對各個未知數的導數。對于上面的例子,我們可以寫下如下的雅各比矩陣傳入。
def j(x): x0,x1,x2 = x.tolist() return[[0,5,0],[8*x0,-2*x2*cos(x1*x2],[0,x2,x1]] result = optimize.fsolve(fun,[1,1,1],fprime=j) #result [-0.70622057 -0.6 -2.5]
scipy的內部在實現fslove時應該時應該是利用了坐標上升算法或者梯度相關優化算法,但本人沒有考證,有興趣的可以看看源碼。
最小二乘擬合
關于最小二乘算法的理論這里并不想談,網上解釋的文章也挺多,在 optimize模塊中,可以使用leastsq()對數據進行最小二乘擬合計算。 leastsq()的用法很簡單,只需要將計箅誤差的函數和待確定參數的初始值傳遞給它即可。
x = np.array([8.19,2.72,6.39,8.71,4.7,2.66,3.78]) y = np.array([7.01,2.78,6.47,6.71,4.1,4.23,4.05]) def residual(p): k,b = p return y-(k*x+b) r = optimize.leastsq(residual,[1,0]) k,b = r[0] # print k .613495349193 # print b .79409254326
def func(x,p): """ 計算的正弦波 :A*sin(2*pi*k*x+theta) """ A,k,theta = p return A*sin(2*np.pi*k*x+theta) def redis(p,y,x): return y-func(x,p) x = np.linspace(0,2*np.pi,100) A,k,theta = 10,0.34,np.pi/6 y0 = func(x,[A,k,theta]) # 加入噪聲 np.random.seed(0) y1 = y0+2*np.random.randn(len(x)) p0 = [7,0.40,0] # p0是A,k,theta的初始值,y1,x要擬合的數據 plsq = optimize.leastsq(redis, p0,args=(y1,x)) print [A,k,theta] #真是的參數值 print plsq[0] #擬合后的參數值
對于像正弦波或者余弦波的曲線擬合,optimize提供curve_fit()函數,它的使用方式和leastq()稍有不同,它直接計算曲線的值,比如上面的擬合正弦波可以用cureve_fit()來寫。
def func2(x,p): """ 計算的正弦波 :A*sin(2*pi*k*x+theta) """ A,k,theta = p return A*sin(2*np.pi*k*x+theta) ret,_=optimize.curve_fit(func2,x,y1,p0=p0)
該函數有一個缺點就是對于初始值敏感,如果初始頻率和真實頻率值差太多,會導致最后無法收斂到真是頻率。
局部最小值
optimize模塊還提供了常用的最小值算法如:Nelder-Mead、Powell、CG、BFGS、Newton-CG等,在這些最小值計算時,往往會傳入一階導數矩陣(雅各比矩陣)或者二階導數矩陣(黑塞矩陣)從而加速收斂,這些最優化算法往往不能保證收斂到全局最小值,大部分會收斂到局部極小值。這些函數的調用方式為:
optimize.minimize(target_fun,init_val,method,jac,hess) target_fun:函數的表達式計算; init_val:初始值; method:最小化的算法; jac:雅各比矩陣 hess:黑塞矩陣。
全局最小值算法
全局最小值使用optimize.basinhopping()來實現,這個函數首先要定義一個誤差計算方式,比如平方誤差函數,niter時迭代的次數,最后還需要一個局部極小值優化方法,minimizer_kwargs傳入。比如上面的正弦函數擬合:
def func1(x,p): """ 計算的正弦波 :A*sin(2*pi*k*x+theta) """ A,k,theta = p return A*sin(2*np.pi*k*x+theta) def func_error(p,y,x): return np.sum((y-func1(x,p)**2) result = optimize.basinhopping(func_error,[1,1,1],niter=10, minimizer_kwargs={"method":"L-BFGS-B", "args":(y1,x1)}) ## [1,1,1]是傳入的初始值,args是需要擬合的數據
看完上述內容,你們掌握怎么在python中使用optimize的方法了嗎?如果還想學到更多技能或想了解更多相關內容,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。