您好,登錄后才能下訂單哦!
小編給大家分享一下pytorch中torch.nn.AdaptiveAvgPool2d()自適應平均池化函數怎么用,希望大家閱讀完這篇文章之后都有所收獲,下面讓我們一起去探討吧!
具體如下:
AdaptiveAvgPool2d
CLASStorch.nn.AdaptiveAvgPool2d(output_size)[SOURCE]
Applies a 2D adaptive average pooling over an input signal composed of several input planes.
The output is of size H x W, for any input size. The number of output features is equal to the number of input planes.
Parameters
output_size – the target output size of the image of the form H x W. Can be a tuple (H, W) or a single H for a square image H x H. H and W can be either a int, or None which means the size will be the same as that of the input.
Examples
>>> # target output size of 5x7 >>> m = nn.AdaptiveAvgPool2d((5,7)) >>> input = torch.randn(1, 64, 8, 9) >>> output = m(input) >>> # target output size of 7x7 (square) >>> m = nn.AdaptiveAvgPool2d(7) >>> input = torch.randn(1, 64, 10, 9) >>> output = m(input) >>> # target output size of 10x7 >>> m = nn.AdaptiveMaxPool2d((None, 7)) >>> input = torch.randn(1, 64, 10, 9) >>> output = m(input)
>>> input = torch.randn(1, 3, 3, 3) >>> input tensor([[[[ 0.6574, 1.5219, -1.3590], [-0.1561, 2.7337, -1.8701], [-0.8572, 1.0238, -1.9784]], [[ 0.4284, 1.4862, 0.3352], [-0.7796, -0.8020, -0.1243], [-1.2461, -1.7069, 0.1517]], [[ 1.4593, -0.1287, 0.5369], [ 0.6562, 0.0616, 0.2611], [-1.0301, 0.4097, -1.9269]]]]) >>> m = nn.AdaptiveAvgPool2d((2, 2)) >>> output = m(input) >>> output tensor([[[[ 1.1892, 0.2566], [ 0.6860, -0.0227]], [[ 0.0833, 0.2238], [-1.1337, -0.6204]], [[ 0.5121, 0.1827], [ 0.0243, -0.2986]]]]) >>> 0.6574+1.5219+2.7337-0.1561 4.7569 >>> 4.7569/4 1.189225 >>>
看完了這篇文章,相信你對“pytorch中torch.nn.AdaptiveAvgPool2d()自適應平均池化函數怎么用”有了一定的了解,如果想了解更多相關知識,歡迎關注億速云行業資訊頻道,感謝各位的閱讀!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。