您好,登錄后才能下訂單哦!
小編給大家分享一下Python中內置類型性能的示例分析,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!
timeit模塊
timeit模塊可以用來測試一小段Python代碼的執行速度。
Timer是測量小段代碼執行速度的類。
class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>)
stmt參數是要測試的代碼語句(statment);
setup參數是運行代碼時需要的設置;
timer參數是一個定時器函數,與平臺有關。
Timer對象.timeit(number=1000000)
Timer類中測試語句執行速度的對象方法。number參數是測試代碼時的測試次數,默認為1000000次。方法返回執行代碼的平均耗時,一個float類型的秒數。
list的操作測試
# -*- coding:utf-8 -*- import timeit def t2(): li = [] for i in range(10000): li.insert(0, i) def t0(): li = [] for i in range(10000): li.extend([i]) def t1(): li = [] for i in range(10000): li.append(i) def t3(): li = [] for i in range(10000): li += [i] def t3_1(): li = [] for i in range(10000): li = li + [i] def t4(): li = [ i for i in range(10000)] def t5(): li = list(range(10000)) timer2 = timeit.Timer(stmt="t2()", setup="from __main__ import t2") print("insert", timer2.timeit(number=1000), "seconds") timer0 = timeit.Timer(stmt="t0()", setup="from __main__ import t0") print("extend", timer0.timeit(number=1000), "seconds") timer1 = timeit.Timer(stmt="t1()", setup="from __main__ import t1") print("append", timer1.timeit(number=1000), "seconds") timer3 = timeit.Timer(stmt="t3()", setup="from __main__ import t3") print("+=", timer3.timeit(number=1000), "seconds") timer3_1 = timeit.Timer(stmt="t3_1()", setup="from __main__ import t3_1") print("+加法", timer3_1.timeit(number=1000), "seconds") timer4 = timeit.Timer(stmt="t4()", setup="from __main__ import t4") print("[i for i in range()]", timer4.timeit(number=1000), "seconds") timer5 = timeit.Timer(stmt="t5()", setup="from __main__ import t5") print("list", timer5.timeit(number=1000), "seconds")
執行結果: insert 18.678989517 seconds extend 1.022223395000001 seconds append 0.6755100029999994 seconds += 0.773258104 seconds +加法 126.929554195 seconds [i for i in range()] 0.36483252799999377 seconds list 0.19607099800001038 seconds
pop操作測試
x = range(2000000) pop_zero = Timer("x.pop(0)","from __main__ import x") print("pop_zero ",pop_zero.timeit(number=1000), "seconds") x = range(2000000) pop_end = Timer("x.pop()","from __main__ import x") print("pop_end ",pop_end.timeit(number=1000), "seconds") # ('pop_zero ', 1.9101738929748535, 'seconds') # ('pop_end ', 0.00023603439331054688, 'seconds')
測試pop操作:從結果可以看出,"pop最后一個元素"的效率遠遠高于"pop第一個元素"
可以自行嘗試下list的append(value)和insert(0,value),即一個后面插入和一個前面插入???
list內置操作的時間復雜度
dict內置操作的時間復雜度
以上是“Python中內置類型性能的示例分析”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。