您好,登錄后才能下訂單哦!
這期內容當中小編將會給大家帶來有關如何在tensorflow中使用tf.concat()函數,文章內容豐富且以專業的角度為大家分析和敘述,閱讀完這篇文章希望大家可以有所收獲。
concat()是將tensor沿著指定維度連接起來。其中tensorflow1.3版中是這樣定義的:
concat(values,axis,name='concat')
一、對于2維來說,0表示行,1表示列
t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] with tf.Session() as sess: print(sess.run(tf.concat([t1, t2], 0) ))
結果為:[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]
t1 = [[1, 2, 3], [4, 5, 6]] t2 = [[7, 8, 9], [10, 11, 12]] with tf.Session() as sess: print(sess.run(tf.concat([t1, t2], 1) ))
結果為:[[1, 2, 3, 7, 8, 9], [4, 5, 6, 10, 11, 12]]
二、 對于3維來說 0表示縱向,1表示行,2表示列
t1 = [[[1, 1, 1],[2, 2, 2]],[[3, 3, 3],[4, 4, 4]]] t2 = [[[5, 5, 5],[6, 6, 6]],[[7, 7, 7],[8, 8, 8]]] with tf.Session() as sess: print(sess.run(tf.concat([t1, t2], 0) ))
結果:[[[1 1 1],[2 2 2]] , [[3 3 3],[4 4 4]] , [[5 5 5],[6 6 6]] , [[7 7 7],[8 8 8]]]
Tensor("concat_30:0", shape=(4, 2, 3), dtype=int32)
axis=1的結果如下:
Tensor("concat_31:0", shape=(2, 4, 3), dtype=int32)
[[[1 1 1], [2 2 2],[5 5 5],[6 6 6]], [[3 3 3], [4 4 4],[7 7 7], [8 8 8]]]
axis=2的結果如下:
Tensor("concat_32:0", shape=(2, 2, 6), dtype=int32)
[[[1 1 1 5 5 5],[2 2 2 6 6 6]], [[3 3 3 7 7 7], [4 4 4 8 8 8]]]
上述就是小編為大家分享的如何在tensorflow中使用tf.concat()函數了,如果剛好有類似的疑惑,不妨參照上述分析進行理解。如果想知道更多相關知識,歡迎關注億速云行業資訊頻道。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。