91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

將數據集制作成VOC數據集格式的實例

發布時間:2020-10-19 16:17:10 來源:腳本之家 閱讀:370 作者:attitude_yu 欄目:開發技術

在做目標檢測任務時,若使用Github已復現的論文時,需首先將自己的數據集轉化為VOC數據集的格式,因為論文作者使用的是公開數據集VOC 2007、VOC2012、COCO等類型數據集做方法驗證與比對。

一、VOC數據集格式

--VOCdevkit2007

--VOC2007

--Annotations (xml格式的文件)

--000001.xml

--ImageSets

--Layout

--Main

--train.txt

--test.txt

--val.txt

--trainval.txt

--Segmentation

--JPEGImages (訓練集和測試集圖片)

--000001.jpg

--results

二、轉換過程步驟

1. 使用標注工具標注圖片目標檢測框,生成JSON格式的標注文件(本人使用此生成類型的標注工具,也可使用(LabelImg等標注工具);

2. 批量修改圖片和標注文件名稱,從000001.jpg、000001.json標號開始;

#coding='utf-8'
import os
import numpy as np
 
def imgs_rename(imgs_path):
  imgs_labels_name = np.array(os.listdir(imgs_path)).reshape(-1,2)
  # 從 000001開始
  i = 1
  for img_label_name in imgs_labels_name:
    if img_label_name[0].endswith('.jpg'):
      # 修改圖片名稱
      img_old_name = os.path.join(os.path.abspath(imgs_path), img_label_name[0])
      # 類別+圖片編號  format(str(i),'0>3s') 填充對齊
      img_new_name = os.path.join(os.path.abspath(imgs_path), '00' + format(str(i),'0>4s') + '.jpg')
      os.rename(img_old_name, img_new_name)
      # 修改json文件名稱
      label_old_name = os.path.join(os.path.abspath(imgs_path), img_label_name[1])
      label_new_name = os.path.join(os.path.abspath(imgs_path), '00' + format(str(i), '0>4s') + '.json')
      os.rename(label_old_name, label_new_name)
      i = i + 1
 
if __name__=='__main__':
  # 讀取json文件的路徑
  root = "read_file_path"
 
  imgs_rename(root)

3. 提取圖片和標注文件到不同文件夾下,并將讀取的標注框轉化為txt文件格式(本人的圖片和JSON文件在同一目錄下生成);

import json
import os
import numpy as np
import cv2
 
#讀取json格式文件,返回坐標
def read_json(file_name):
  file = open(file_name,'r',encoding='utf-8')
  set = json.load(file)
  # print("讀取完整信息:",set)
  coord = set['objects'][0]['seg'] # 只讀取第一個標注的車牌
  return coord
 
def save_imgs(imgs_jsons_files, imgs_path):
  # 提取圖片文件夾中的jpg文件名稱
  for idx in range(len(imgs_jsons_list)):
    if imgs_jsons_list[idx][-3:]=='jpg':
      img_name = imgs_jsons_list[idx]
      read_img_path = os.path.join(imgs_jsons_files, img_name)
      img = cv2.imread(read_img_path)
      save_img_path = os.path.join(imgs_path, img_name)
      cv2.imwrite(save_img_path, img)
 
def save_labels(imgs_jsons_files, labels_path):
  # 提取圖片文件夾中的json文件名稱
  for idx in range(len(imgs_jsons_list)):
    if imgs_jsons_list[idx][-4:] == 'json':
      json_name = imgs_jsons_list[idx]
 
      # 操作每一個json文件,讀取并保存坐標
      json_path = os.path.join(imgs_jsons_files, json_name)
      json_coord = read_json(json_path)
      if len(json_coord) > 8:
        print("標注坐標多于四個點的文件名稱:", json_name)
 
      # 提取左上和右下坐標
      roi_coord = []
      for idx in range(len(json_coord)):
        if idx == 0 or idx == 1 or idx == 4 or idx == 5:
          roi_coord.extend([json_coord[idx]])
      # 保存roi坐標到txt文件中
      label_path = labels_path + json_name[:6] + '.txt'
      np.savetxt(label_path, roi_coord)
 
if __name__=='__main__':
  print("loading......")
  # 讀取jpg json文件的路徑
  imgs_jsons_files = "Jpg_json_file_path"
 
  # 保存讀取的真實標簽路徑
  labels_path = "save_labels_path"
  if not os.path.exists(labels_path):
    os.mkdir(labels_path)
  # 保存讀取的圖片
  imgs_path = "sabe_imgs_path"
  if not os.path.exists(imgs_path):
    os.mkdir(imgs_path)
 
  imgs_jsons_list = os.listdir(imgs_jsons_files)
 
  save_imgs(imgs_jsons_files, imgs_path)
  save_labels(imgs_jsons_files, labels_path)
  print("done!!!")

4. 轉化標注框txt格式為xml格式;

# encoding = utf-8
import os
import numpy as np
import codecs
import cv2
 
def read_txt(label_path):
  file = open(label_path,'r',encoding='utf-8')
  label_lines = file.readlines()
  label = []
  for line in label_lines:
    one_line = float(line.strip().split('\n')[0])
    label.extend([one_line])
  return np.array(label,dtype=np.float64)
 
def covert_xml(label,xml_path, img_name, img_path):
  # 獲得圖片信息
  img = cv2.imread(img_path)
  height, width, depth = img.shape
  x_min,y_min,x_max,y_max = label
 
  xml = codecs.open(xml_path, 'w', encoding='utf-8')
  xml.write('<annotation>\n')
  xml.write('\t<folder>' + 'VOC2007' + '</folder>\n')
  xml.write('\t<filename>' + img_name + '</filename>\n')
  xml.write('\t<source>\n')
  xml.write('\t\t<database>The VOC 2007 Database</database>\n')
  xml.write('\t\t<annotation>Pascal VOC2007</annotation>\n')
  xml.write('\t\t<image>flickr</image>\n')
  xml.write('\t\t<flickrid>NULL</flickrid>\n')
  xml.write('\t</source>\n')
  xml.write('\t<owner>\n')
  xml.write('\t\t<flickrid>NULL</flickrid>\n')
  xml.write('\t\t<name>faster</name>\n')
  xml.write('\t</owner>\n')
  xml.write('\t<size>\n')
  xml.write('\t\t<width>' + str(width) + '</width>\n')
  xml.write('\t\t<height>' + str(height) + '</height>\n')
  xml.write('\t\t<depth>' + str(depth) + '</depth>\n')
  xml.write('\t</size>\n')
  xml.write('\t\t<segmented>0</segmented>\n')
  xml.write('\t<object>\n')
  xml.write('\t\t<name>plate</name>\n')
  xml.write('\t\t<pose>Unspecified</pose>\n')
  xml.write('\t\t<truncated>0</truncated>\n')
  xml.write('\t\t<difficult>0</difficult>\n')
  xml.write('\t\t<bndbox>\n')
  xml.write('\t\t\t<xmin>' + str(x_min) + '</xmin>\n')
  xml.write('\t\t\t<ymin>' + str(y_min) + '</ymin>\n')
  xml.write('\t\t\t<xmax>' + str(x_max) + '</xmax>\n')
  xml.write('\t\t\t<ymax>' + str(y_max) + '</ymax>\n')
  xml.write('\t\t</bndbox>\n')
  xml.write('\t</object>\n')
  xml.write('</annotation>')
 
if __name__=='__main__':
  labels_file_path = "D:/Code_py/VOC2007/labels/"
  imgs_file_path = "D:/Code_Py/VOC2007/imgs/"
 
  xmls_file_path = "D:/Code_py/VOC2007/xmls/"
  if not os.path.exists(xmls_file_path):
    os.mkdir(xmls_file_path)
 
  labels_name = os.listdir(labels_file_path)
  for label_name in labels_name:
    label_path = os.path.join(labels_file_path, label_name)
    label = read_txt(label_path)
 
    xml_name = label_name[:6]+'.xml'
    xml_path = os.path.join(xmls_file_path, xml_name)
 
    img_name = label_name[:6]+'.jpg'
    img_path = os.path.join(imgs_file_path, img_name)
 
    covert_xml(label, xml_path, img_name, img_path)

5. 切分數據集為訓練集、驗證集和測試集,僅保存圖片的名稱到txt問價下即可;

import os
import numpy as np
 
if __name__=='__main__':
  root = "save_path"
  train = open(root+"train.txt", 'w', encoding='utf-8')
  train_val = open(root+"trainval.txt", 'w', encoding='utf-8')
  test = open(root+"test.txt", 'w', encoding='utf-8')
  val = open(root+"val.txt", 'w', encoding='utf-8')
 
  imgs_path = os.path.join(root, "imgs")
 
  imgs_name = os.listdir(imgs_path)
 
  # 首先切分訓練驗證集和測試集
  train_val_img_info = []
  for img_name in imgs_name:
    x = np.random.uniform(0,1)
    img_info = str(img_name).strip().split('.')[0]
    # 隨機選取1/2比例的數據為測試集
    if x>0.5:
      train_val_img_info.append(img_info)
      train_val.writelines(img_info)
    else:
      test.writelines(img_info+'\n')
 
  # 然后切分訓練驗證集為訓練集和驗證集
  for img_name in train_val_img_info:
    x = np.random.uniform(0,1)
    if x>0.5:
      train.writelines(img_name+'\n')
    else:
      val.writelines(img_name+'\n')

以上這篇將數據集制作成VOC數據集格式的實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

如皋市| 广元市| 利川市| 鹤山市| 霸州市| 连云港市| 大港区| 镇坪县| 沐川县| 上栗县| 五台县| 托克逊县| 永靖县| 广灵县| 茂名市| 金堂县| 邢台县| 龙江县| 新建县| 老河口市| 都匀市| 韶山市| 淮安市| 孝义市| 综艺| 喀什市| 儋州市| 嵊州市| 丰镇市| 三穗县| 长宁区| 陈巴尔虎旗| 攀枝花市| 大石桥市| 墨玉县| 栖霞市| 高台县| 徐州市| 垦利县| 赤城县| 通榆县|