您好,登錄后才能下訂單哦!
這篇文章主要為大家展示了python如何讀取hdfs上的parquet文件,內容簡而易懂,希望大家可以學習一下,學習完之后肯定會有收獲的,下面讓小編帶大家一起來看看吧。
在使用python做大數據和機器學習處理過程中,首先需要讀取hdfs數據,對于常用格式數據一般比較容易讀取,parquet略微特殊。從hdfs上使用python獲取parquet格式數據的方法(當然也可以先把文件拉到本地再讀取也可以):
1、安裝anaconda環境。
2、安裝hdfs3。
conda install hdfs3
3、安裝fastparquet。
conda install fastparquet
4、安裝python-snappy。
conda install python-snappy
5、讀取文件
##namenode mode: from hdfs3 import HDFileSystem from fastparquet import ParquetFile hdfs = HDFileSystem(host=IP, port=8020) sc = hdfs.open pf = ParquetFile(filename, open_with=sc) df = pf.to_pandas() ##返回pandas的DataFrame類型 ##HA mode: from hdfs3 import HDFileSystem from fastparquet import ParquetFile host = "nameservice1" conf = { "dfs.nameservices":"nameservice1", ...... } hdfs = HDFileSystem(host = host, pars = conf) ......
python訪問HDFS HA的三種方法
python訪問hdfs常用的包有三個,如下:
1、hdfs3
其實從安裝便捷性和使用上來說,并不推薦hdfs3,因為他的系統依賴和網絡要求較高,但是某些情況下使用hdfs3會比較方便,官網資料點這里。如上面介紹,IP直接訪問namenode:
from hdfs3 import HDFileSystem hdfs = HDFileSystem(host=namenode, port=8020) hdfs.ls('/tmp')
HA訪問:
host = "nameservice1" conf = {"dfs.nameservices": "nameservice1", "dfs.ha.namenodes.nameservice1": "namenode113,namenode188", "dfs.namenode.rpc-address.nameservice1.namenode113": "hostname_of_server1:8020", "dfs.namenode.rpc-address.nameservice1.namenode188": "hostname_of_server2:8020", "dfs.namenode.http-address.nameservice1.namenode188": "hostname_of_server1:50070", "dfs.namenode.http-address.nameservice1.namenode188": "hostname_of_server2:50070", "hadoop.security.authentication": "kerberos" } fs = HDFileSystem(host=host, pars=conf) ##或者下面這種配置 host = "ns1" conf = { "dfs.nameservices":"ns1", "dfs.ha.namenodes.ns1":"namenode122,namenode115", "dfs.namenode.rpc-address.ns1.namenode122":"nnlab01:8020", "dfs.namenode.servicerpc-address.ns1.namenode122":"nnlab01:8022", "dfs.namenode.http-address.ns1.namenode122":"nnlab01:50070", "dfs.namenode.https-address.ns1.namenode122":"nnlab01:50470", "dfs.namenode.rpc-address.ns1.namenode115":"nnlab02:8020", "dfs.namenode.servicerpc-address.ns1.namenode115":"nnlab02:8022", "dfs.namenode.http-address.ns1.namenode115":"nnlab02:50070", "dfs.namenode.https-address.ns1.namenode115":"nnlab02:50470", } hdfs = HDFileSystem(host = host, pars = conf)
2、hdfs
這種方法在使用的時候配置比較簡單,官網資料也比較豐富,但是需要注意的是該API可以模擬用戶訪問,權限較大。IP直接訪問:
import hdfs
client = hdfs.client.InsecureClient(url="http://namenode:50070", user="hdfs")
HA訪問:
import hdfs
client = hdfs.client.InsecureClient(url="http://namenode1:50070;http://namenode2:50070", user="hdfs")
3、pyhdfs
安裝命令:pip install PyHDFS
官網地址,直接訪問:
import pyhdfs
client = pyhdfs.HdfsClient(hosts="namenode:50070",user_name="hdfs")
HA訪問
import pyhdfs
client = pyhdfs.HdfsClient(hosts=["namenode1:50070","namenode2:50070"],user_name="hdfs")
補充知識:python spark中parquet文件寫到hdfs,同時避免太多的小文件(block小文件合并)
在pyspark中,使用數據框的文件寫出函數write.parquet經常會生成太多的小文件,例如申請了100個block,而每個block中的結果
只有幾百K,這在機器學習算法的結果輸出中經常出現,這是一種很大的資源浪費,那么如何同時避免太多的小文件(block小文件合并)?
其實有一種簡單方法,該方法需要你對輸出結果的數據量有個大概估計,然后使用Dataframe中的coalesce函數來指定輸出的block數量
即可,具體使用代碼如下:
df.coalesce(2).write.parquet(path,mode)
這里df是指你要寫出的數據框,coalesce(2)指定了寫到2個block中,一個block默認128M,path是你的寫出路徑,mode是寫出模式,常用的是
"overwrite"和"append"。
以上就是關于python如何讀取hdfs上的parquet文件的內容,如果你們有學習到知識或者技能,可以把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。