您好,登錄后才能下訂單哦!
這篇文章將為大家詳細講解有關Tensorflow2.0 tf.keras.Model.load_weights() 報錯處理問題如何解決?,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。
錯誤描述:
1、保存模型:model.save_weights('./model.h6')
2、腳本重啟
3、加載模型:model.load_weights('./model.h6')
4、模型報錯:ValueError: You are trying to load a weight file containing 12 layers into a model with 0 layers.
問題分析:
模型創建后還沒有編譯,一般是在模型加載前調用model.build(input_shape), 但我通過Dataset將輸入已經變為dict格式了,暫時沒找這樣輸入怎么匹配input_shape參數
解決方法:
model.fit(train_dataset, epochs=0)
將epochs設為0,這樣模型在編譯的同時不會訓練數據,減少耗費的時間,之后就可以正常加載保存的參數了
補充知識:調用Kears中kears.model.load_model方法遇到的問題和解決方法
之前一直使用tf和pytorch,就算是tf也是tf.estimator用得比較多,很少使用keras,最近嘗試使用kears快速訓練和部署一些分類任務,在使用load_model的時候遇到一些問題
問題1:
SystemError: unknown opcode
原因是因為模型定義用到了lambda
gap = Lambda(lambda x: x[0]/x[1], name = 'RescaleGAP')([gap_features, gap_mask])
我在python3.5的環境訓練的模型,python3.6的環境load模型。兩個環境的lambda有差異,這個問題。
問題2:
ValueError: Unknown metric function:****
我的錯誤是
ValueError: Unknown metric function:top_2_accuracy
因為在構建模型時,使用了自己定義的top_2_accuracy方法,所以在load_model時需要將top_2_accuracy做為參數傳進去
from keras.models import load_model from keras.metrics import top_k_categorical_accuracy def top_2_accuracy(in_gt, in_pred): return top_k_categorical_accuracy(in_gt, in_pred, k=2) model = load_model("model.h6",custom_objects={'top_2_accuracy': top_2_accuracy})
關于Tensorflow2.0 tf.keras.Model.load_weights() 報錯處理問題如何解決?就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。