91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

DeepLearning4j分布式訓練怎么實現

小億
107
2024-03-25 13:51:51
欄目: 深度學習

DeepLearning4j可以通過使用Apache Spark或者Hadoop來實現分布式訓練。下面是使用Apache Spark來實現分布式訓練的步驟:

  1. 在pom.xml文件中添加以下依賴:
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-core</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-ui_2.10</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.deeplearning4j</groupId>
    <artifactId>deeplearning4j-scaleout</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.nd4j</groupId>
    <artifactId>nd4j-native</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.nd4j</groupId>
    <artifactId>nd4j-cuda-9.2-platform</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.datavec</groupId>
    <artifactId>datavec-api</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.datavec</groupId>
    <artifactId>datavec-local</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
<dependency>
    <groupId>org.datavec</groupId>
    <artifactId>datavec-spark_2.10</artifactId>
    <version>1.0.0-beta3</version>
</dependency>
  1. 創建一個SparkConf對象和JavaSparkContext對象:
SparkConf conf = new SparkConf();
conf.setAppName("DL4J Spark");
JavaSparkContext sc = new JavaSparkContext(conf);
  1. 加載數據集并創建一個DataSet對象:
JavaRDD<String> data = sc.textFile("hdfs://path/to/data.txt");
JavaRDD<DataSet> dataSet = data.map(new StringToDataSet());
  1. 創建一個MultiLayerConfiguration對象并設置神經網絡的配置:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
    .seed(12345)
    .weightInit(WeightInit.XAVIER)
    .updater(new Adam(0.01))
    .list()
    .layer(0, new DenseLayer.Builder().nIn(784).nOut(250)
        .activation(Activation.RELU)
        .build())
    .layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
        .activation(Activation.SOFTMAX)
        .nIn(250).nOut(10).build())
    .build();
  1. 創建一個ComputationGraph對象并使用SparkComputationGraph對象進行訓練:
ComputationGraph model = new ComputationGraph(conf);
model.init();
SparkComputationGraph sparkNet = new SparkComputationGraph(sc, model);
sparkNet.fit(dataSet);

通過以上步驟,就可以使用DeepLearning4j和Apache Spark實現分布式訓練。同樣的,如果要使用Hadoop來實現分布式訓練,可以使用datavec-hadoop依賴來讀取HDFS中的數據集,并使用SparkComputationGraph對象進行訓練。

0
灵宝市| 哈巴河县| 南澳县| 吉安县| 得荣县| 沧州市| 郴州市| 西充县| 蕲春县| 嵊泗县| 桦甸市| 秦安县| 湘阴县| 永康市| 临潭县| 成武县| 邳州市| 彰化市| 潮州市| 宁蒗| 弋阳县| 昌江| 岱山县| 吉木萨尔县| 呼玛县| 那曲县| 石柱| 句容市| 临清市| 城固县| 凉山| 台北市| 固安县| 平陆县| 盘锦市| 鹤峰县| 东源县| 天全县| 临洮县| 兴海县| 苍梧县|