在Keras中處理缺失值的方法取決于數據集的特點以及建模的方式。以下列舉了一些處理缺失值的常見方法:
SimpleImputer
類來實現這一功能。from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy='mean')
X_train = imputer.fit_transform(X_train)
X_test = imputer.transform(X_test)
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(10, input_dim=10, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='adam')
model.fit(X_train, y_train, epochs=100, batch_size=32)
X_missing = imputer.transform(X_missing)
X_filled = model.predict(X_missing)
model = Sequential()
model.add(Dense(10, input_dim=10, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='adam')
model.fit(X_train, y_train, epochs=100, batch_size=32)
需要注意的是,處理缺失值的方法應根據數據集的特點和建模的需求來選擇,不同的方法可能會對模型的效果產生不同的影響。