您好,登錄后才能下訂單哦!
在C++中實現聚類算法時,自適應距離度量是一種根據數據點之間的距離進行加權的方法,它可以提高聚類效果
首先,我們需要包含必要的頭文件并定義一些輔助函數:
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
// 計算兩點之間的歐幾里得距離
double euclidean_distance(const std::vector<double>& a, const std::vector<double>& b) {
double sum = 0;
for (size_t i = 0; i < a.size(); ++i) {
sum += pow(a[i] - b[i], 2);
}
return sqrt(sum);
}
// 自適應距離度量
double adaptive_distance(const std::vector<double>& a, const std::vector<double>& b, double alpha) {
double distance = euclidean_distance(a, b);
return alpha * distance + (1 - alpha) * 1; // 使用1作為最小距離閾值
}
接下來,我們可以實現一個簡單的聚類算法,如K-means:
// K-means聚類算法
void kmeans(std::vector<std::vector<double>>& data, int k, int max_iterations) {
// 初始化質心
std::vector<std::vector<double>> centroids(k);
for (int i = 0; i < k; ++i) {
centroids[i] = data[i];
}
// 聚類過程
for (int iteration = 0; iteration < max_iterations; ++iteration) {
std::vector<std::vector<int>> clusters(k);
std::vector<double> distances(data.size());
// 計算每個點到質心的距離并分配到最近的質心
for (size_t i = 0; i < data.size(); ++i) {
double min_distance = DBL_MAX;
int closest_centroid = 0;
for (int j = 0; j < k; ++j) {
double distance = adaptive_distance(data[i], centroids[j]);
if (distance < min_distance) {
min_distance = distance;
closest_centroid = j;
}
}
clusters[closest_centroid].push_back(i);
distances[i] = min_distance;
}
// 更新質心
std::vector<std::vector<double>> new_centroids(k);
for (int i = 0; i < k; ++i) {
if (!clusters[i].empty()) {
std::vector<double> cluster_mean(data[0].size(), 0);
for (int index : clusters[i]) {
for (size_t j = 0; j < data[0].size(); ++j) {
cluster_mean[j] += data[index][j];
}
}
for (size_t j = 0; j < cluster_mean.size(); ++j) {
cluster_mean[j] /= clusters[i].size();
}
new_centroids[i] = cluster_mean;
}
}
// 檢查質心是否收斂
bool converged = true;
for (int i = 0; i < k; ++i) {
if (euclidean_distance(centroids[i], new_centroids[i]) > 1e-6) {
converged = false;
break;
}
}
if (converged) {
break;
}
centroids = new_centroids;
}
}
最后,我們可以使用以下代碼測試我們的K-means聚類算法:
int main() {
std::vector<std::vector<double>> data = {{1, 2}, {1.5, 1.8}, {5, 8}, {8, 8}, {1, 0.6}, {9, 11}};
int k = 2;
int max_iterations = 100;
kmeans(data, k, max_iterations);
std::cout << "質心:" << std::endl;
for (const auto& centroid : centroids) {
std::cout << "[" << centroid[0] << ", " << centroid[1] << "]" << std::endl;
}
return 0;
}
這個例子中,我們使用了自適應距離度量來計算數據點到質心的距離。adaptive_distance
函數接受一個參數alpha
,用于控制距離度量的權重。當alpha
接近1時,距離度量將更依賴于歐幾里得距離;當alpha
接近0時,距離度量將更依賴于最小距離閾值(這里設為1)。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。