您好,登錄后才能下訂單哦!
在C++中,聚類算法和網格搜索是機器學習中兩個重要的概念
聚類是一種無監督學習方法,用于將數據集中的樣本分成不同的組或簇。常用的C++聚類算法有K-means、DBSCAN等。以下是K-means算法的簡單實現:
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
using namespace std;
struct Point {
double x, y;
};
double distance(const Point& a, const Point& b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
vector<Point> kmeans(const vector<Point>& points, int k, int max_iterations = 100) {
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dis(0, points.size() - 1);
vector<Point> centroids(k);
vector<int> labels(points.size(), -1);
for (int i = 0; i < max_iterations; ++i) {
vector<Point> clusters[k];
for (int j = 0; j < points.size(); ++j) {
int closest_centroid = dis(gen);
clusters[closest_centroid].push_back(points[j]);
labels[j] = closest_centroid;
}
bool converged = true;
for (int j = 0; j < k; ++j) {
if (clusters[j].size() == 0) {
// Find the largest cluster and take its centroid as the new centroid
int max_cluster_index = 0;
for (int l = 1; l < k; ++l) {
if (clusters[l].size() > clusters[max_cluster_index].size()) {
max_cluster_index = l;
}
}
centroids[j] = clusters[max_cluster_index][0];
clusters[max_cluster_index].clear();
} else {
Point new_centroid = {0, 0};
for (const auto& point : clusters[j]) {
new_centroid.x += point.x;
new_centroid.y += point.y;
}
new_centroid.x /= clusters[j].size();
new_centroid.y /= clusters[j].size();
centroids[j] = new_centroid;
}
for (int j = 0; j < points.size(); ++j) {
double min_distance = DBL_MAX;
int closest_centroid = -1;
for (int l = 0; l < k; ++l) {
double dist = distance(points[j], centroids[l]);
if (dist < min_distance) {
min_distance = dist;
closest_centroid = l;
}
}
if (closest_centroid != labels[j]) {
converged = false;
break;
}
}
if (!converged) break;
}
if (converged) break;
}
return centroids;
}
網格搜索是一種參數優化方法,用于在給定的參數空間中搜索最佳參數組合。常用的C++網格搜索庫有GridSearchCV
(基于Scikit-learn)和mlpack
等。以下是使用Scikit-learn的GridSearchCV
進行參數優化的示例:
#include <iostream>
#include <vector>
#include <algorithm>
#include <random>
#include <chrono>
#include <sklearn/model_selection/grid_search.hpp>
#include <sklearn/svm/svc.hpp>
using namespace std;
using namespace sklearn::model_selection;
using namespace sklearn::svm;
int main() {
// 生成隨機數據集
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<> dis(0, 100);
vector<vector<double>> X(100, vector<double>(2));
vector<double> y(100);
for (int i = 0; i < 100; ++i) {
X[i][0] = dis(gen);
X[i][1] = dis(gen);
y[i] = dis(gen) % 2;
}
// 定義參數網格
param_grid grid = {{0, 1}, {1, 2}, {2, 3}};
// 創建SVM分類器
SVC classifier;
// 創建網格搜索對象
GridSearchCV grid_search(classifier, grid, cv::evaluate_classification, vector<double>());
// 開始網格搜索
auto start = chrono::high_resolution_clock::now();
grid_search.fit(X, y);
auto end = chrono::high_resolution_clock::now();
// 輸出最佳參數組合和對應的得分
cout << "Best parameters: " << grid_search.best_params_ << endl;
cout << "Best score: " << grid_search.best_score_ << endl;
cout << "Time taken: " << chrono::duration<double, milli>(end - start).count() << " ms" << endl;
return 0;
}
這個示例使用了Scikit-learn的GridSearchCV
類來進行SVM分類器的參數優化。首先,我們生成了一個隨機數據集,然后定義了參數網格,接著創建了一個SVM分類器和一個網格搜索對象。最后,我們調用fit
方法開始網格搜索,并輸出了最佳參數組合和對應的得分。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。