您好,登錄后才能下訂單哦!
C++聚類算法與遺傳算法的結合是一個有趣且具有挑戰性的研究課題。聚類算法用于將數據分組,而遺傳算法則用于優化問題求解。將這兩種算法結合,可以在聚類過程中尋找最優解。
以下是一個簡單的C++示例,展示了如何將K-means聚類算法與遺傳算法結合:
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
#include <algorithm>
// K-means聚類算法
void kmeans(std::vector<std::vector<double>>& data, int k, std::vector<std::vector<double>>& centroids) {
int n = data.size();
std::vector<int> labels(n, -1);
std::vector<std::vector<double>> centroids_new(k, std::vector<double>(data[0].size(), 0));
// 初始化質心
for (int i = 0; i < k; ++i) {
centroids_new[i] = data[rand() % n];
}
// 迭代過程
bool converged = false;
while (!converged) {
converged = true;
// 計算每個點到質心的距離并更新標簽
for (int i = 0; i < n; ++i) {
double min_dist = std::numeric_limits<double>::max();
int min_idx = -1;
for (int j = 0; j < k; ++j) {
double dist = 0;
for (int d = 0; d < data[i].size(); ++d) {
dist += pow(data[i][d] - centroids_new[j][d], 2);
}
if (dist < min_dist) {
min_dist = dist;
min_idx = j;
}
}
labels[i] = min_idx;
// 更新質心
for (int d = 0; d < data[i].size(); ++d) {
centroids_new[min_idx][d] += data[i][d];
}
centroids_new[min_idx][d] /= n;
}
// 檢查質心是否收斂
for (int i = 0; i < k; ++i) {
bool is_converged = true;
for (int j = i + 1; j < k; ++j) {
if (std::linalg::norm(centroids_new[i] - centroids_new[j]) > 1e-6) {
is_converged = false;
break;
}
}
if (!is_converged) {
converged = false;
break;
}
}
// 更新質心
centroids = centroids_new;
}
}
// 遺傳算法
std::vector<int> genetic_algorithm(std::vector<std::vector<double>>& data, int k, int population_size, int max_generations) {
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<> dis(0, k - 1);
// 初始化種群
std::vector<std::vector<int>> population(population_size, std::vector<int>(data[0].size(), -1));
for (int i = 0; i < population_size; ++i) {
for (int j = 0; j < data[0].size(); ++j) {
population[i][j] = dis(gen);
}
}
// 迭代過程
for (int gen = 0; gen < max_generations; ++gen) {
// 計算適應度
std::vector<int> fitness(population_size, 0);
for (int i = 0; i < population_size; ++i) {
fitness[i] = 0;
for (int j = 0; j < data.size(); ++j) {
double min_dist = std::numeric_limits<double>::max();
int min_idx = -1;
for (int l = 0; l < k; ++l) {
double dist = 0;
for (int d = 0; d < data[j].size(); ++d) {
dist += pow(data[j][d] - population[i][d], 2);
}
if (dist < min_dist) {
min_dist = dist;
min_idx = l;
}
}
fitness[i] += min_dist;
}
}
// 選擇
std::vector<int> selected;
std::vector<double> fitness_sum(population_size, 0);
for (int i = 0; i < population_size; ++i) {
double rand_val = static_cast<double>(rand()) / RAND_MAX;
double cumulative_fitness = 0;
for (int j = 0; j < population_size; ++j) {
cumulative_fitness += fitness[j];
if (rand_val < cumulative_fitness) {
selected.push_back(j);
break;
}
}
}
// 交叉
std::vector<std::vector<int>> offspring(population_size, std::vector<int>(data[0].size(), -1));
for (size_t i = 0; i < selected.size(); i += 2) {
int parent1 = selected[i];
int parent2 = selected[i + 1];
for (int j = 0; j < data[0].size(); ++j) {
if (rand() % 2 == 0) {
offspring[i][j] = parent1[j];
} else {
offspring[i][j] = parent2[j];
}
}
}
// 變異
for (size_t i = 0; i < offspring.size(); ++i) {
int idx = rand() % data[0].size();
offspring[i][idx] = dis(gen);
}
// 更新種群
population = offspring;
}
// 返回最優解
int best_idx = 0;
double min_fitness = fitness[0];
for (int i = 1; i < population_size; ++i) {
if (fitness[i] < min_fitness) {
min_fitness = fitness[i];
best_idx = i;
}
}
return population[best_idx];
}
int main() {
std::vector<std::vector<double>> data = {{1, 2}, {1, 4}, {1, 0}, {10, 2}, {10, 4}, {10, 0}};
int k = 2;
int population_size = 10;
int max_generations = 50;
std::vector<std::vector<double>> centroids = genetic_algorithm(data, k, population_size, max_generations);
kmeans(data, k, centroids);
std::cout << "質心: ";
for (const auto& centroid : centroids) {
std::cout << "(" << centroid[0] << ", " << centroid[1] << ") ";
}
std::cout << std::endl;
return 0;
}
這個示例中,我們首先使用遺傳算法找到一組初始質心,然后將這些質心作為K-means算法的輸入。K-means算法會迭代地更新質心和標簽,直到收斂。最后,我們輸出找到的最優質心。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。