您好,登錄后才能下訂單哦!
1、圖的父類
是一個抽象類,不能實類化對象,應具有的是抽象方法,提供一個接口,在由子類繼承,實現自己的方法,
應提供的共有抽象方法和保護的數據:
public: virtual bool insertVertex(const Type &v) = 0; //插入頂點 virtual bool insertEdge(const Type &v1, const Type &v2) = 0; //插入邊 virtual bool removeVertex(const Type &v) = 0; //刪除頂點 virtual bool removeEdge(const Type &v1, const Type &v2) = 0; //刪除邊 virtual int getFirstNeighbor(const Type &v) = 0; //得到第一個相鄰頂點 virtual int getNextNeighbor(const Type &v, const Type &w) = 0; //得到下一個相鄰頂點 public: virtual int getVertexIndex(const Type &v)const = 0; //得到頂點下標 virtual void showGraph()const = 0; //顯示圖 protected: int maxVertices; //最大頂點數 int curVertices; //當前頂點數 int curEdges; //當前邊數
2、子類繼承、實現自己的方法
C++實現,繼承的體現,是為了實現多態
(1)Graph.h
#ifndef _GRAPH_H_ #define _GRAPH_H_ #include<iostream> using namespace std; #define VERTEX_DEFAULT_SIZE 10 template<typename Type> class Graph{ public: bool isEmpty()const{ return curVertices == 0; } bool isFull()const{ if(curVertices >= maxVertices || curEdges >= curVertices*(curVertices-1)/2) return true; //圖滿有2種情況:(1)、當前頂點數超過了最大頂點數,存放頂點的空間已滿 return false; //(2)、當前頂點數并沒有滿,但是當前頂點所能達到的邊數已滿 } int getCurVertex()const{ return curVertices; } int getCurEdge()const{ return curEdges; } public: virtual bool insertVertex(const Type &v) = 0; //插入頂點 virtual bool insertEdge(const Type &v1, const Type &v2) = 0; //插入邊 virtual bool removeVertex(const Type &v) = 0; //刪除頂點 virtual bool removeEdge(const Type &v1, const Type &v2) = 0; //刪除邊 virtual int getFirstNeighbor(const Type &v) = 0; //得到第一個相鄰頂點 virtual int getNextNeighbor(const Type &v, const Type &w) = 0; //得到下一個相鄰頂點 public: virtual int getVertexIndex(const Type &v)const = 0; //得到頂點下標 virtual void showGraph()const = 0; //顯示圖 protected: int maxVertices; //最大頂點數 int curVertices; //當前頂點數 int curEdges; //當前邊數 }; ///////////////////////////////////////////////////下面先是鄰接矩陣 template<typename Type> class GraphMtx : public Graph<Type>{ //鄰接矩陣繼承父類矩陣 #define maxVertices Graph<Type>::maxVertices //因為是模板,所以用父類的數據或方法都得加上作用域限定符 #define curVertices Graph<Type>::curVertices #define curEdges Graph<Type>::curEdges public: GraphMtx(int vertexSize = VERTEX_DEFAULT_SIZE){ //初始化鄰接矩陣 maxVertices = vertexSize > VERTEX_DEFAULT_SIZE ? vertexSize : VERTEX_DEFAULT_SIZE; vertexList = new Type[maxVertices]; //申請頂點空間 for(int i = 0; i < maxVertices; i++){ //都初始化為0 vertexList[i] = 0; } edge = new int*[maxVertices]; //申請邊的行 for(i = 0; i < maxVertices; i++){ //申請列空間 edge[i] = new int[maxVertices]; } for(i = 0; i < maxVertices; i++){ //賦初值為0 for(int j = 0; j < maxVertices; j++){ edge[i][j] = 0; } } curVertices = curEdges = 0; //當前頂點和當前邊數 } GraphMtx(Type (*mt)[4], int sz){ //通過已有矩陣的初始化 int e = 0; //統計邊數 maxVertices = sz > VERTEX_DEFAULT_SIZE ? sz : VERTEX_DEFAULT_SIZE; vertexList = new Type[maxVertices]; //申請頂點空間 for(int i = 0; i < maxVertices; i++){ //都初始化為0 vertexList[i] = 0; } edge = new int*[maxVertices]; //申請邊的行 for(i = 0; i < maxVertices; i++){ //申請列空間 edge[i] = new Type[maxVertices]; } for(i = 0; i < maxVertices; i++){ //賦初值為矩陣當中的值 for(int j = 0; j < maxVertices; j++){ edge[i][j] = mt[i][j]; if(edge[i][j] != 0){ e++; //統計列的邊數 } } } curVertices = sz; curEdges = e/2; } ~GraphMtx(){} public: bool insertVertex(const Type &v){ if(curVertices >= maxVertices){ return false; } vertexList[curVertices++] = v; return true; } bool insertEdge(const Type &v1, const Type &v2){ int maxEdges = curVertices*(curVertices-1)/2; if(curEdges >= maxEdges){ return false; } int v = getVertexIndex(v1); int w = getVertexIndex(v2); if(v==-1 || w==-1){ cout<<"edge no exit"<<endl; //要插入的頂點不存在,無法插入 return false; } if(edge[v][w] != 0){ //當前邊已經存在,不能進行插入 return false; } edge[v][w] = edge[w][v] = 1; //因為是無向圖,對稱的,存在邊賦為1; return true; } //刪除頂點的高效方法 bool removeVertex(const Type &v){ int i = getVertexIndex(v); if(i == -1){ return false; } vertexList[i] = vertexList[curVertices-1]; int edgeCount = 0; for(int k = 0; k < curVertices; k++){ if(edge[i][k] != 0){ //統計刪除該行的邊數 edgeCount++; } } //刪除行 for(int j = 0; j < curVertices; j++){ edge[i][j] = edge[curVertices-1][j]; } //刪除列 for(j = 0; j < curVertices; j++){ edge[j][i] = edge[j][curVertices-1]; } curVertices--; curEdges -= edgeCount; return true; } /* //刪除頂點用的是數組一個一個移動的方法,效率太低。 bool removeVertex(const Type &v){ int i = getVertexIndex(v); if(i == -1){ return false; } for(int k = i; k < curVertices-1; ++k){ vertexList[k] = vertexList[k+1]; } int edgeCount = 0; for(int j = 0; j < curVertices; ++j){ if(edge[i][j] != 0) edgeCount++; } for(int k = i; k < curVertices-1; ++k) { for(int j = 0; j < curVertices; ++j) { edge[k][j] = edge[k+1][j]; } } for(int k = i; k < curVertices-1; ++k) { for(int j = 0; j < curVertices; ++j) { edge[j][k] = edge[j][k+1]; } } curVertices--; curEdges -= edgeCount; return true; } */ bool removeEdge(const Type &v1, const Type &v2){ int v = getVertexIndex(v1); int w = getVertexIndex(v2); if(v==-1 || w==-1){ //判斷要刪除的邊是否在當前頂點內 return false; //頂點不存在 } if(edge[v][w] == 0){ //這個邊根本不存在,沒有必要刪 return false; } edge[v][w] = edge[w][v] = 0; //刪除這個邊賦值為0,代表不存在; curEdges--; return true; } int getFirstNeighbor(const Type &v){ int i = getVertexIndex(v); if(i == -1){ return -1; } for(int col = 0; col < curVertices; col++){ if(edge[i][col] != 0){ return col; } } return -1; } int getNextNeighbor(const Type &v, const Type &w){ int i = getVertexIndex(v); int j = getVertexIndex(w); if(i==-1 || j==-1){ return -1; } for(int col = j+1; col < curVertices; col++){ if(edge[i][col] != 0){ return col; } } return -1; } public: void showGraph()const{ if(curVertices == 0){ cout<<"Nul Graph"<<endl; return; } for(int i = 0; i < curVertices; i++){ cout<<vertexList[i]<<" "; } cout<<endl; for(i = 0; i < curVertices; i++){ for(int j = 0; j < curVertices; j++){ cout<<edge[i][j]<<" "; } cout<<vertexList[i]<<endl; } } int getVertexIndex(const Type &v)const{ for(int i = 0; i < curVertices; i++){ if(vertexList[i] == v){ return i; } } return -1; } private: Type *vertexList; //存放頂點的數組 int **edge; //存放頂點關系的矩陣用邊表示 }; ///////////////////////////////////////////////////////////////下面是鄰接表 template<typename Type> class Edge{ //邊的存儲結構 public: Edge(int num) : dest(num), link(NULL){} public: int dest; Edge *link; }; template<typename Type> class Vertex{ //頂點的存儲結構 public: Type data; Edge<Type> *adj; }; template<typename Type> class GraphLnk : public Graph<Type>{ #define maxVertices Graph<Type>::maxVertices //因為是模板,所以用父類的數據或方法都得加上作用域限定符 #define curVertices Graph<Type>::curVertices #define curEdges Graph<Type>::curEdges public: GraphLnk(int sz = VERTEX_DEFAULT_SIZE){ maxVertices = sz > VERTEX_DEFAULT_SIZE ? sz : VERTEX_DEFAULT_SIZE; vertexTable = new Vertex<Type>[maxVertices]; for(int i = 0; i < maxVertices; i++){ vertexTable[i].data = 0; vertexTable[i].adj = NULL; } curVertices = curEdges = 0; } public: bool insertVertex(const Type &v){ if(curVertices >= maxVertices){ return false; } vertexTable[curVertices++].data = v; return true; } bool insertEdge(const Type &v1, const Type &v2){ int v = getVertexIndex(v1); int w = getVertexIndex(v2); if(v==-1 || w==-1){ return false; } Edge<Type> *p = vertexTable[v].adj; while(p != NULL){ //這里主要判斷邊是否已經存在 if(p->dest == w){ //無向圖,判斷一邊即可; return false; } p = p->link; } //v1-->v2 //采用頭插 Edge<Type> *s = new Edge<Type>(w); s->link = vertexTable[v].adj; vertexTable[v].adj = s; //v2-->v1 //采用頭插 Edge<Type> *q = new Edge<Type>(v); q->link = vertexTable[w].adj; vertexTable[w].adj = q; curEdges++; return true; } bool removeVertex(const Type &v){ int i = getVertexIndex(v); if(i == -1){ return false; } Edge<Type> *p = vertexTable[i].adj; while(p != NULL){ vertexTable[i].adj = p->link; int k = p->dest; Edge<Type> *q = vertexTable[k].adj; if(q->dest == i){ vertexTable[k].adj = q->link; delete q; }else{ while(q->link != NULL && q->link->dest != i){ q = q->link; } Edge<Type> *t = q->link; q->link = t->link; delete t; } delete p; p = vertexTable[i].adj; curEdges--; } curVertices--; //下面實行覆蓋 vertexTable[i].data = vertexTable[curVertices].data; vertexTable[i].adj = vertexTable[curVertices].adj; vertexTable[curVertices].adj = NULL; int k = curVertices; p = vertexTable[i].adj; while(p != NULL){ Edge<Type> *s = vertexTable[p->dest].adj; while(s != NULL){ if(s->dest == k){ s->dest = i; break; } s = s->link; } p = p->link; } return true; } bool removeEdge(const Type &v1, const Type &v2){ int i = getVertexIndex(v1); int j = getVertexIndex(v2); if(i==-1 || j==-1){ //保證頂點的保存在 return false; } //v1-->v2 Edge<Type> *p = vertexTable[i].adj; if(p == NULL){ //判斷有沒有邊 return false; } if(p->link == NULL && p->dest == j){ //刪除的是第一個邊,其后沒有邊了; vertexTable[i].adj = NULL; delete p; }else if(p->dest == j){ //刪除的是第一個邊,并且其后還有邊 vertexTable[i].adj = p->link; delete p; }else{ while(p->link != NULL){ if(p->link->dest == j){ Edge<Type> *q = p->link; p->link = q->link; delete q; } p = p->link; } } //v2-->v1 Edge<Type> *s = vertexTable[j].adj; if(s == NULL){ //判斷有沒有邊 return false; } if(s->link == NULL && s->dest == i){ //刪除的是第一個邊,其后沒有邊了; vertexTable[j].adj = NULL; delete s; curEdges--; return false; }else if(s->dest == i){ //刪除的是第一個邊,并且其后還有邊 vertexTable[j].adj = s->link; delete s; curEdges--; return true; }else{ while(s->link != NULL){ if(s->link->dest == i){ Edge<Type> *q = s->link; s->link = q->link; delete q; curEdges--; return true; } s = s->link; } } return true; } int getFirstNeighbor(const Type &v){ int i = getVertexIndex(v); if(i != -1){ Edge<Type> *p = vertexTable[i].adj; if(p != NULL){ return p->dest; } } return -1; } int getNextNeighbor(const Type &v, const Type &w){ int i = getVertexIndex(v); int j = getVertexIndex(w); if(i==-1 || j==-1){ return -1; } Edge<Type> *p = vertexTable[i].adj; while(p != NULL){ if(p->dest == j && p->link != NULL){ return p->link->dest; } p = p->link; } return -1; } public: int getVertexIndex(const Type &v)const{ for(int i = 0; i < curVertices; i++){ if(vertexTable[i].data == v){ return i; } } return -1; } void showGraph()const{ for(int i = 0; i < curVertices; i++){ cout<<vertexTable[i].data<<":-->"; Edge<Type> *p = vertexTable[i].adj; while(p != NULL){ cout<<p->dest<<"-->"; p = p->link; } cout<<"Nul. "<<endl; } } private: Vertex<Type> *vertexTable; //指向頂點的指針,是申請數組用的 }; #endif
(2)、Graph.cpp
#include"Graph.h" int main(void){ GraphMtx<char> gm; //鄰接矩陣 gm.insertVertex('A'); //插入頂點 gm.insertVertex('B'); gm.insertVertex('C'); gm.insertVertex('D'); gm.insertEdge('A','B'); //插入邊 gm.insertEdge('A','D'); gm.insertEdge('B','C'); gm.insertEdge('C','D'); cout<<gm.getFirstNeighbor('A')<<endl; //B cout<<gm.getNextNeighbor('A','B')<<endl;//D gm.showGraph(); gm.removeEdge('A','B'); gm.removeVertex('B'); cout<<"-----------------------------------------------------------------"<<endl; gm.showGraph(); /////////////////////////////////////////////////////////////////////////////////////////// GraphLnk<char> gl; //鄰接表 gl.insertVertex('A'); gl.insertVertex('B'); gl.insertVertex('C'); gl.insertVertex('D'); gl.insertEdge('A','B'); gl.insertEdge('A','D'); gl.insertEdge('B','C'); gl.insertEdge('C','D'); gl.showGraph(); cout<<gl.getFirstNeighbor('A')<<endl; cout<<gl.getNextNeighbor('A','B')<<endl; gl.removeEdge('B','C'); cout<<"---------------------"<<endl; gl.removeVertex('B'); gl.showGraph(); return 0; }
3、鄰接多重表
是一個十字交叉鏈的形式;在很大程度上節省了空間,還是要對鏈表的操作很熟悉;
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。