您好,登錄后才能下訂單哦!
在TFLearn中創建自定義層和模型需要繼承tflearn.layers.core.Layer
和tflearn.models.DNN
類。下面是一個簡單的示例:
import tensorflow as tf
import tflearn
class CustomLayer(tflearn.layers.core.Layer):
def __init__(self, incoming, **kwargs):
super(CustomLayer, self).__init__(incoming, **kwargs)
def create_layer(self, incoming):
# 自定義層的操作
return tf.nn.relu(incoming)
# 使用自定義層
input_layer = tflearn.input_data(shape=[None, 784])
custom_layer = CustomLayer(input_layer)
class CustomModel(tflearn.models.DNN):
def __init__(self, custom_layer, **kwargs):
super(CustomModel, self).__init__(custom_layer, **kwargs)
def create_model(self):
# 構建自定義模型
self.network = tflearn.fully_connected(self.network, 128, activation='relu')
self.network = tflearn.fully_connected(self.network, 10, activation='softmax')
# 使用自定義模型
custom_layer = CustomLayer(input_layer)
custom_model = CustomModel(custom_layer)
通過繼承Layer
和DNN
類,可以實現自定義的層和模型,并在TFLearn中使用它們。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。